Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T20:14:47.040Z Has data issue: false hasContentIssue false

Dry Etching of Ta-Si-N Diffusion Barrier Material in Cf4+02 Gas Mixtures

Published online by Cambridge University Press:  25 February 2011

G.F. McLane
Affiliation:
Army Research Laboratory, Ft. Monmouth, NJ 07703
L. Casas
Affiliation:
Army Research Laboratory, Ft. Monmouth, NJ 07703
J.S Reid
Affiliation:
California Institute of Technology, Pasadena, CA 91125
E. KoIawa
Affiliation:
California Institute of Technology, Pasadena, CA 91125
M-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

Sputtered Ta36Si14N50 amorphous diffusion barrier layers were reactive ion etched in CF4+02 plasmas. Etch rate varied with gas composition, with 15 percent 02 concentration producing maximum etch rate. Etch rates increased with both pressure and power. Etching proceeded only after an initial delay time which was dependent upon gas composition and applied power. The delay time was probably caused by the presence of a surface native oxide which must first be removed before etching can commence. Auger electron spectroscopy measurements showed the native oxide to be approximately 2 nm thick on as-grown samples, and indicate that near-surface stoichiometry is maintained on etched samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kolawa, E., and Nicolet, M-A., J. Vac. Sci. Technol. A8, 3006 (1990).CrossRefGoogle Scholar
2 Kolawa, E., Pokela, P.J., Reid, J.S., Chen, J.S., and NicoIet, M-A., Appl. Surf. Sci. 53, 373 (1991).CrossRefGoogle Scholar
3 Kolawa, E., Chen, J.S., Reid, J.S., Pokela, P.J., and Nicolet, M-A., J. Appl. Phys. 70, 1369 (1991).CrossRefGoogle Scholar
4 Pokela, P.J., Kolawa, E., Nicolet, M-A., and Ruiz, R.P., J. Electrochem. Soc. 138, 2125 (1991).CrossRefGoogle Scholar
5 Molarius, J.M., Kolawa, E., Morishita, K., Nicolet, M-A., Tandon, J.L., Leavitt, J.A., and McIntyre, L.C. Jr., J. Electrochem. Soc. 138, 834 (1991).CrossRefGoogle Scholar
6 Reid, J.S., Ruiz, R.P., Kolawa, E., Chen, J.S., Madok, J., and Nicolet, M-A., in Mat. Res. Soc. Symp. Proc. 260 (1989). (A.Katz, Y.I.Nissim, S.P.Murarka, and J.M.E.Harper, eds., Materials Research Society, Pittsburgh, PA).Google Scholar
7 Sun, S.P. and Murarka, S.P., J. Electrochem. Soc. 135, 2353 (1988).CrossRefGoogle Scholar
8 Riley, P.E. and Hanson, D.A., J. Vac. Sci. Technol. B 7, 1352 (1989).CrossRefGoogle Scholar
9 Jinno, K., Jap. J. Appl. Phys. 17, 1283 (1978).CrossRefGoogle Scholar
10 Kumar, R., Ladas, C., and Hudson, G., Solid State Technol. 19, 54 (1976).CrossRefGoogle Scholar
11 Kuo, Y., Jap. J. Appl. Phys. 32, 179 (1993).CrossRefGoogle Scholar
12 Harshbarger, W.R., Porter, R.A., Miller, T.A., and Norton, P., Appl. Spectroscopy 31, 201 (1977).CrossRefGoogle Scholar
13 Hikosaka, K., Mimura, T., and Joshin, K., Jap. J. Appl. Phys. 20, L847 (1981).CrossRefGoogle Scholar
14 Cheung, R., Thoms, S., Watt, M., Foad, M.A., Sotomayor-Torres, C.M., Wilkinson, CD.W., Cox, U.J., Crowley, R.A., Dunscombe, C., and Williams, R.H., Semicond. Sci. Technol. 7, 1189 (1992).CrossRefGoogle Scholar
15 Pearton, S.J., Hobson, W.S., and Jones, K.S., J. Appl. Phys. 66, 5009 (1989).CrossRefGoogle Scholar
16 Pearton, S.J., Hobson, W.S., Chakrabarti, U.K., Emerson, A.B., Lane, E., and Jones, K.S., J. Appl. Phys. 66,2137(1989).CrossRefGoogle Scholar
17 Mattausch, H.J., Hasler, B., and Beinvogl, W., J. Vac. Sci. Technol. Bl, 15 (1983).CrossRefGoogle Scholar