Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T05:42:11.019Z Has data issue: false hasContentIssue false

The diamond-solution interface: the surface energy of hydrogen terminated nanocrystalline CVD diamond derived from contact angle measurements

Published online by Cambridge University Press:  07 July 2011

Stoffe D. Janssens
Affiliation:
Institute for Materials Research (IMO), Hasselt University, BE-3590 Diepenbeek, Belgium
Sien Drijkoningen
Affiliation:
Institute for Materials Research (IMO), Hasselt University, BE-3590 Diepenbeek, Belgium
Marc Saitner
Affiliation:
Institute for Materials Research (IMO), Hasselt University, BE-3590 Diepenbeek, Belgium
Hans-Gerd Boyen
Affiliation:
Institute for Materials Research (IMO), Hasselt University, BE-3590 Diepenbeek, Belgium
Ken Haenen
Affiliation:
Institute for Materials Research (IMO), Hasselt University, BE-3590 Diepenbeek, Belgium IMOMEC, IMEC vzw, BE-3590 Diepenbeek, Belgium
Patrick Wagner
Affiliation:
Institute for Materials Research (IMO), Hasselt University, BE-3590 Diepenbeek, Belgium IMOMEC, IMEC vzw, BE-3590 Diepenbeek, Belgium
Get access

Abstract

In this work, a determination of the surface energy for hydrogen terminated nanocrystalline diamond grown with microwave plasma enhanced chemical vapor deposition is presented. Five identical hydrogen terminated nanocrystalline diamond layers of ~150 nm thick are deposited on silicon substrates and examined with X-ray photoelectron spectroscopy to determine the surface groups and possible surface contaminations. In order to evaluate the surface energy, contact angle measurements are performed using the sessile drop method in combination with data analysis based on the ‘Owens, Wendt, Rabel and Kaelble’ method. Four different experimental approaches to evaluate the surface energy of hydrogen terminated nanocrystalline diamond are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Owens, D. and Wendt, R., J. Appl. Polym. Sci. 13, 1741 (1969).Google Scholar
2. Kaelble, D.H., Journal of Adhesion 2, 66 (1970).Google Scholar
3. Chen, L. and Hong, F.C., Diamond Relat. Mater. 12, 968 (2003).Google Scholar
4. Ostrovskaya, L., Perevertailo, V., Ralchenko, V., Saveliev, A., and Zhuravlev, V., Diamond Relat Mater. 16, 2109 (2007).Google Scholar
5. Williams, O.A. and Nesladek, M., Phys. Status Solidi A 203, 3375 (2006).Google Scholar
6. Janssens, S.D., Pobedinskas, P., Vacik, J., Petrakova, V., Ruttens, B., D’Haen, J., Nesladek, M., Haenen, K., and Wagner, P., Submitted to New. J. Phys.Google Scholar
7. Strom, G., Fredriksson, M., and Stenius, P., J. Colloid Interface Sci. 119, 352 (1987).Google Scholar
8. Vazquez, G., Alvarez, E., and Navaza, J.M., J. Chem. Eng. Data 40, 611 (1995).Google Scholar
9. de Gennes, P., Brochard-Wyart, F., and , Quere, D., Capillarity and Wetting Phenomena (Springer-Verlag, New York, 2004).Google Scholar
10. Azevedo, A.F., Matsushima, J.T., Vicentin, F.C., Baldan, M.R., and Ferreira, N.G., Appl. Surf. Sci. 255, 6565 (2009).Google Scholar