Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T08:23:36.837Z Has data issue: false hasContentIssue false

Detection of Similar Elastic Properties Using a Magnetic Force Controlled Afm

Published online by Cambridge University Press:  15 February 2011

Shin-Ichi Yamamoto
Affiliation:
Joint Research Center for Atom Technology (JRCAT), Angstrom Technology Partnership (ATP), 1–1–4 Higashi, Tsukuba, Ibaraki 305, Japan
Hirofumi Yamada
Affiliation:
JRCAT, National Institute for Advanced Innterdisciplinary Research (NAIR), 1–1–4 Higashi, Tsukuba, Ibaraki 305, Japan
Suzanne P. Jarvis
Affiliation:
Joint Research Center for Atom Technology (JRCAT), Angstrom Technology Partnership (ATP), 1–1–4 Higashi, Tsukuba, Ibaraki 305, Japan
Makoto Motomatsu
Affiliation:
Joint Research Center for Atom Technology (JRCAT), Angstrom Technology Partnership (ATP), 1–1–4 Higashi, Tsukuba, Ibaraki 305, Japan
Hiroshi Tokumoto
Affiliation:
Joint Research Center for Atom Technology (JRCAT), Angstrom Technology Partnership (ATP), 1–1–4 Higashi, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

We have investigated regional variations of elastic properties using a magnetic force controlled AFM. A piece of small magnet was fixed at the end of the backside of the AFM cantilever so as to apply forces directly to the tip through the external magnetic field of an electromagnet. By modulating the applied forces to the tip and measuring the resulting amplitude of oscillation, a sensitive measurement of the local contact stiffness can be made. We have applied this technique to phase-separated films of polystyrene/polymethylmethacrylate (PS-PMMA) which have almost identical Young's moduli.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Binnig, G., Quate, C. F., Ch. Gerber : Phys. Rev. Lett. 56 930 (1986).Google Scholar
2. Pethica, J. B. and Oliver, W. C., Mat. Res. Soc. Symp. Proc. 130, 13 (1989)Google Scholar
3. Weihs, T.P. and Pethica, J. B.,, Mat. Res. Soc. Symp. Proc. 23, 325330 (1992)Google Scholar
4. Maivald, P., Butt, H. J., Gould, S. A. C, Prater, C. B., D.rake, B., Grurley, J. A., Elings, V. B., and Hansma, P. K., Nanotechnology. 2,103, (1991)Google Scholar
5. Radmacher, M., Tillmann, R. W., Fritz, M., and Gaub, H. E., Science. 257, 1900 (1992)Google Scholar
6. Nie, H.-Y., Motomatsu, M., Mizutani, W., Tokumoto, H., J. Vac. Sci. Technol. B13, 1163(1995)Google Scholar
7. H.-Nie, Y., Motomatsu, M., Mizutani, W., Tokumoto, H., to appear in Thin Solid FilmsGoogle Scholar
8. Bhushan, B., and Koinkar, V. N., Appl. Phys. Lett. 64. 1653 (1994)Google Scholar
9. Hues, S.M., Draper, C.F., and Colton, R.J., to be published in J. Vac. Sci. Technol.Google Scholar
10. Burnham, N. A. and Colton, R. J., and Pollock, H. M., Nanotechnology. 4, 64, (1993)Google Scholar
11. Mayer, E., Heinzelmann, H., Grutter, P., Jung, T., Hidber, H., and Guntherrodt, , Thin Solid films. 181, 52 (1989)Google Scholar
12. Boschung, E., Heuberger, M., and Dietler, G., Appl. Phys. Lett. 64, 3566 (1994)Google Scholar
13. Nysten, B. and Legras, R., J. Appl. Phys. 78, 5953 (1995)Google Scholar
14. Weihs, T. P., Nawaz, Z., Jarvis, S. P., and Pethica, J. B., Appl. Phys. Lett. 59. 3536 (1991)Google Scholar
15. Motomatsu, M., Nie, H-Y., Mizutani, W., and Tokumoto, H., Jpn. J. Appl. Phys. 33, 3775 (1994)Google Scholar
16. Meyer, G. and Amer, N., Appl. Phys. Lett. 53, 1045 (1988)Google Scholar
17. Nielsen, L. E., Mechanical Properties of Polymers (Reinhold, New York, 1967)Google Scholar