Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T23:35:20.085Z Has data issue: false hasContentIssue false

Depth Profiling of Mechanical Properties on the Nanoscale of Single-Layer and Stepwise Graded DLC Films by Nanoindentation and AFM

Published online by Cambridge University Press:  01 February 2011

C. Ziebert
Affiliation:
Forschungszentrum Karlsruhe, Institut für Materialforschung I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
S. Ulrich
Affiliation:
Forschungszentrum Karlsruhe, Institut für Materialforschung I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
M. Stüber
Affiliation:
Forschungszentrum Karlsruhe, Institut für Materialforschung I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Get access

Abstract

The strong ion bombardment, applied during sputter deposition of diamond-like carbon films (DLC), which is needed to promote the growth of the sp3-bonded hard phase, inevitably is accompanied by compressive stress generation, thus limiting their maximum thickness. Gradient coatings with gradients in composition, constitution or properties are a well-known concept to manage such stress problems. The stepwise graded layer concept adjusts a graded constitution of the growing carbon film by a stepwise increase of the ion energy, i.e. the substrate bias voltage, during magnetron sputtering. To study the influence of the layer thickness on the expansion of the interface regions between the layers deposited with different bias voltage, samples with increasing deposition time of the top layer and thus thickness ratio were investigated by using the small angle cross-section nanoindentation method (SACS). It was revealed that the thickness of the interface regions is linearly dependent on the thickness ratio of the graded layers, which might be an evidence for stress-induced diffusion and relaxation processes in the carbon network. By using microindentation with a Berkovich indenter and ex-situ AFM-imaging it was found that all graded films exhibited higher Berkovich thresholds for crack development and thus better crack resistance than the hardest single-layer film and kept a high hardness value of about 4000 HV0.005.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Robertson, J., Mater. Sci. Eng. R 37, 129 (2002).Google Scholar
[2] Ziegele, H., Scheibe, H.J., Schultrich, B., Surf. Coat. Technol. 97, 385 (1997).Google Scholar
[3] Gioti, M., Logothetidis, S., Charitidis, C., Appl. Phys. Lett. 73, 184 (1998).Google Scholar
[4] Holleck, H., and Stüber, M., “Method of manufacturing a composite material structure”, US Patent No. 6, 110, 329 (2000); EU Patent No. EP 0912774B1 (2002).Google Scholar
[5] Friedmann, T.A., Sullivan, J.P., Knapp, J.A., Tallant, D.R., Follstaedt, D.M., Medlin, D.L., Mirkarimi, P.B., Appl. Phys. Lett. 71, 3820 (1997).Google Scholar
[6] Dimigen, H., Hübsch, H., Memming, R., Appl. Phys. Lett. 50, 1056 (1987).Google Scholar
[7] Bauer, C., Leiste, H., Stüber, M., Ulrich, S., and Holleck, H., Diamond Rel. Mater. 11, 1139 (2002).Google Scholar
[8] Stüber, M., Ulrich, S., Leiste, H., Kratzsch, A., and Holleck, H., Surf. Coat. Technol. 116119, 591 (1999).Google Scholar
[9] Ulrich, S., Ziebert, C., Stüber, M., Nold, E., Holleck, H., Göken, M., Schweitzer, E., and Schloβmacher, P., Surf. Coat. Technol. 188189, 331 (2004).Google Scholar
[10] Gatzen, H.H., Maetzig, J.C., Prec. Eng. 21, 134 (1997).Google Scholar
[11] Ziebert, C., Bauer, C., Stüber, M., Ulrich, S., and Holleck, H., Thin Solid Films 482, 6368 (2005).Google Scholar
[12] Hong, J.D., Davis, R.F., J. Am. Ceram. Soc. 63, 546 (1980).Google Scholar
[13] Hainsworth, S.V., McGurk, M.R., Page, T.F., Surf. Coat Technol. 102, 97 (1998).Google Scholar
[14] Li, X., Diao, D., Bhushan, B., Acta mater. 45, 4453 (1997).Google Scholar
[15] Karimi, A., Wang, Y., Cselle, T., Morstein, M., Thin Solid Films 420421, 275 (2002).Google Scholar
[16] Marton, D., Boyd, K., Rabalais, J., Lifshitz, Y., J. Vac. Sci. Technol. A 16, 455 (1998).Google Scholar
[17] Brenner, D., Phys. Rev. B. 42, 9458 (1990); 46, 1948 (1992).Google Scholar
[18] Kelires, P.C., Phys. Rev. Lett. 73, 2460 (1994).Google Scholar