Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T19:37:13.004Z Has data issue: false hasContentIssue false

Deposition Profile Control of Carbon Films on Patterned Substrates using a Hydrogen-assited Plasma CVD Method

Published online by Cambridge University Press:  31 January 2011

Takuya Nomura
Affiliation:
t.nomura@plasma.ed.kyushu-u.ac.jp, Kyushu University, Fukuoka, Japan
Kazunori Koga
Affiliation:
koga@ed.kyushu-u.ac.jp, Kyushu University, JST CREST, Fukuoka, Japan
Masaharu Shiratani
Affiliation:
siratani@ed.kyushu-u.ac.jp, Kyushu University, JST CREST, Fukuoka, Japan
Yuichi Setsuhara
Affiliation:
setsuhara@jwri.osaka-u.ac.jp, Osaka University, JST CREST, Osaka, Japan
Makoto Sekine
Affiliation:
sekine@plasma.engg.nagoya-u.ac.jp, Nagoya University, JST CREST, Nagoya, Japan
Masaru Hori
Affiliation:
hori@nuee.nagoya-u.ac.jp, Nagoya University, JST CREST, Nagoya, Japan
Get access

Abstract

We have studied effects of H atom source on deposition profiles of carbon films, deposited by H assisted anisotropic plasma CVD method. Deposition rate normalized by that for the aspect ratio of 1 at sidewall and bottom decreases with increasing discharge power of H atom source from 0 W to 500 W, because the incident H atom flux per surface area in a trench increases and H atoms etch carbon films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Robertson, J. Prog. Solid State Chem. 21 199 (1991).Google Scholar
[2] Robertson, J. Surf. Coatings Technol. 50 185 (1992).Google Scholar
[3] Robertson, J. Adv. Phys. 35 317 (1986).Google Scholar
[4] Robertson, J. Materials Sci. and Engineering R37 129281 (2004).Google Scholar
[5] Voevodin, A.A. Donley, M.S. Surf. Coatings Technol. 82 199 (1996).Google Scholar
[6] Shiratani, M. Kawasaki, H. Fukuzawa, T. Kinoshita, T. and Watanabe, Y.: J. Phys. D29 2754 (1996).Google Scholar
[7] Jin, H. J. Shiratani, M., Kawasaki, T. Fukuzawa, T. Kinoshita, T. Watanabe, Y. Kawasaki, H. and Toyofuku, M.: J. Vac. Sci. & Technol. A17 726 (1999).Google Scholar
[8] Jin, H. J. Shiratani, M. Nakatake, Y. Fukuzawa, T. Kinoshita, T. Watanabe, Y. and Toyofuku, M.: Jpn. J. Appl. Phys. 38, 4492, (1999).Google Scholar
[9] Shiratani, M. Jin, H. J. Takenaka, K. Koga, K. Kinoshita, T. and Watanabe, Y. Sci. Technol. Adv Matr. 2 505 (2001).Google Scholar
[10] Takenaka, K. Shiratani, M. Onishi, M. Takeshita, M. Kinoshita, T. Koga, K. and Watanabe, Y. Mater. Sci. Semi. Processing 5 301 (2002).Google Scholar
[11] Takenaka, K. Kita, M. Kinoshita, T. Koga, K. Shiratani, M. and Watanabe, Y. J. Vac. Sci. Technol. A22 1903 (2004).Google Scholar
[12] Takenaka, K. Shiratani, M. Takeshita, M. Kita, M. Koga, K. and Watanabe, Y. Pure Appl. Chem. 77 391 (2005).Google Scholar
[13] Takenaka, K. Koga, K. Shiratani, M. Watanabe, Y. and Shingen, T. Thin Solid Films 506 197 (2006).Google Scholar
[14] Umetsu, Jun, Inoue, Kazuhiko, Koga, Kazunori and Shiratani, Masaharu, Journal of Physics: Conference Series 100 062007 (2008).Google Scholar
[15] Kokura, H. Nakamura, K., Ghanashev, I. P. and Sugai, H. Jpn. J. Appl., Phys., 38, 5262, (1999).Google Scholar
[16] Jacob, W. Thin Solid Films, 326 1 (1998).Google Scholar
[17] Gathen, V. Schulz-von der and Döbele, H.F. D, Plasma Chem. Plasma Process.bele Process., 16 461 (1996).Google Scholar