Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T18:42:22.915Z Has data issue: false hasContentIssue false

Deposition of Highly Conductive n+ Silicon Film for a-Si:H Thin Film Transistor

Published online by Cambridge University Press:  10 February 2011

Yue Kuo
Affiliation:
Now: Thin Film Microelectronics Research Laboratory, Chemical Engineering Department, Texas A&M University, College Station, TX 77843, yuekuo@chennov2.tamu.edu
K. Latzko
Affiliation:
IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598
Get access

Abstract

Plasma enhanced chemical vapor deposition of phosphorus-doped n+ silicon film over a wide range of process conditions has been studied. The deposited films were characterized with SIMS, Raman, and XRD. An unusually abrupt change of resistivity over a small SiH4(1% PH3) flow rate has been observed and was correlated to the variation of the film's morphology from amorphous to micrycrystalline. The grains are less than 50 Å in size and has strong <111> orientation. Amorphous silicon thin film transistors with microcrystalline n+ source and drain contacts have consistently good device characteristics. However, the contact resistance is comparable to the channel resistance when the channel length approaches 1 micrometer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chikamura, T., Hotta, S., and Nagata, S., Amorphous Silicon Semiconductors - Pure and hydrogenated, edited by Madan, A., Thompson, M., Adler, D., and Hamakawa, Y. (Mater. Res. Soc. Proc. 95, Pittsburgh, PA 1987), p. 421430.Google Scholar
2 Nijs, J., Baert, K., Symons, J., Kobayashi, K., and Deschepper, P., Appl. Surf. Sci. 36, p. 23 (1989).Google Scholar
3 Spear, W. E. and Comber, P. G. Le, Phil. Mag. 33(6), p. 935 (1976).Google Scholar
4 Mauskar, A. S., Naseem, H. A., Brown, W. D., and Ang, S. S., J. Vac. Sci. Technol. A, 11(4), p. 1858 (1993).Google Scholar
5 Tsai, C. C., Anderson, G. B., Thompson, R., and Wacker, B., J. Non-Cryst. Solids, 114, p. 151 (1989).Google Scholar
6 Matsuda, A., J. Non-Cryst. Solids, 59/60, p. 767 (1983).Google Scholar
7 Asano, A., Appl. Phys. Lett., 56, p. 533 (1990).Google Scholar
8 Richter, H. and Ley, L., J. Appl. Phys. 52(12), p. 7281 (1981).Google Scholar
9 Byun, J. S., Jeon, H. B., Jun, J. M., Yoo, J. H., Lee, K. H., Park, M., and Jang, J., Mat. Res. Soc. Symp. 377, p. 7580 (1995).Google Scholar
10 Yamamoto, H., Ishiwara, H., and Furukawa, S., Appl. Phys. Lett. 46(3), p. 268270 (1985).Google Scholar
11 Csepregi, L., Kennedy, E. F., Gallagher, T. J., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 48, p. 4234 (1977).Google Scholar
12 Mogab, C. J. and Levinstein, H. L., J. Vac. Sci. Technol. 17(3), p. 721 (1980).Google Scholar
13 Kuo, Y., Appl. Phys. Lett. 71(9), p. 2821 (1997).Google Scholar