Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T04:21:14.221Z Has data issue: false hasContentIssue false

Crystal Detectors in Particle Physics

Published online by Cambridge University Press:  21 February 2011

Harvey B. Newman
Affiliation:
California Institute of Technology, Pasadena, CA 91125, U.S.A
Giorgio Gratta
Affiliation:
California Institute of Technology, Pasadena, CA 91125, U.S.A
Ren-yuan Zhu
Affiliation:
California Institute of Technology, Pasadena, CA 91125, U.S.A
Get access

Abstract

We review the principal characteristics driving the design of precision calorimeters composed of inorganic crystal scintillators now in operation (L3, CLEO II) or developed for the next generation of particle physics experiments. The unique discovery potential of these detectors (1.5 to 50 m3 of crystals; 104 to > 105 elements) is the result of their high electron and photon energy resolution over a wide energy range, uniform hermetic acceptance and fine granularity.

Experiments at CERN's multi-TeV Large Hadron Collider (LHC) will search for the Higgs particles thought to be responsible for mass, and for many other new physics processes. In order to exploit the intrinsically high resolution of crystal detectors, exceptionally high speed (1 to 30 ns decay time) and radiation resistance are required. BaF2 and CeF3 are currently the preferred choices, and higher density alternatives such as PbWO4 are under investigation.

Lower energy, high luminosity experiments that will measure rare particle decays, and explore the violation of the fundamental “CP” symmetry that may be related to the predominance of matter over antimatter in our universe, have chosen Cesium Iodide for its combination of high light output, speed, and radiation resistance.

Recent developments by Caltech include the use of photons generated by an H beam from an RFQ accelerator to calibrate and provide sub-percent resolution in the L3 BGO calorimeter, and an in situ optical bleaching technique that renders large BaF2 crystals now mass produced in China radiation hard up to dose levels ≳l 10 MegaRads.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gratta, G., Newman, H. and Zhu, R.Y., Crystal Calorimeters in Particle Physics, CALT-68-1922, March 1994, to be published in Annual Review of Nuclear and Paricle Science Volume 44 (1994).Google Scholar
2. Oreglia, M et al. , Phys. Rev. D 25 2295 (1982).Google Scholar
3. Bloom, E and Peck, C,Ann. Rev. Nucl. Part. Sci. 33 143197 (1983).10.1146/annurev.ns.33.120183.001043Google Scholar
4.L3 Collaboration, Nucl. Instr. and Meth. A289 35 (1990).Google Scholar
5. Kubota, Y et al. , Nucl. Instr. and Meth. A320 66 (1992).Google Scholar
6. Aker, E et al. , Nucl. Instr. and Meth. A321 69 (1992).Google Scholar
7. Arisaka, K et al. , KTe V Design Report, FN-580, January (1992).Google Scholar
8.BaBar Status Report, SLAC-419, June (1993).Google Scholar
9.1992 Progress Report on B Physics Task Force Activities, KEK Report 93-1, January (1993).Google Scholar
10.L* Letter of Intent to the SSC Laboratory, November (1990).Google Scholar
11.GEM Letter of Intent, SSCL SR-1184, November (1991).Google Scholar
12.Compact Muon Solenoid Letter of Intent, CERN/LHCC 92-3, LHCC/I1 (1992).Google Scholar
13.LSP Letter of Intent, CERN/LHCC 92-5, LHCC/13 (1992).Google Scholar
14.Brun R et al., GEANT3, CERN DD/EE/84-1 (1987).Google Scholar
15. Zhu, RY,Nucl. Instr. and Meth. A340 442 (1994).Google Scholar
16. Harshaw, QS, Scintillation Detectors, (March 1992).Google Scholar
17.BDH Limited, BDH Crystran - Monocrystal Products for Optics, (January 1990).Google Scholar
18. Wei, ZY and Zhu, RY,Nucl. Instr. and Meth. A326 508 (1993).Google Scholar
19.Crystal Clear Collaboration, CERN-DRDC-93-31 (1993) and Nucl. Instr. and Meth. A332 373 (1993).Google Scholar
20. Kobayashi, M and Sakuragi, S,Nucl. Instr. and Meth. A254 275 (1987); Bieler C et al, Nucl. Instr. and Meth. A234 435 (1985); Grassmann H et al, Nucl. Instr. and Meth. A228 323 (1985); Schlogl S et al, Nucl. Instr. and Meth. A242 89 (1985); Woody C et al, IEEE Trans. NS-37 492 (1990) and 39 524 (1992); and Hitlin D and Eigen G,in Heavy Scintillators, Editions Frontieres, ed. F. Nataristefani et al, Sept 1992, p. 467.Google Scholar
21. Schotanus, P et al. , Nucl. Instr. and Meth. A238 564 (1985); Kobayashi M et al, Nucl. Instr. and Meth. A270 106 (1988).Google Scholar
22. Majewski, S and Anderson, D,Nucl. Instr. and Meth. A241 76 (1985); and Majewski S and Bently MK, Nucl. Instr. and Meth. A260 373 (1987).Google Scholar
23. Caffreay, AJ et al. , IEEE Trans. NS-33 230 (1986); Murashita M et al, Nucl. Instr. and Meth. A243 67 (1986); Marakami A et al, Nucl. Instr. and Meth. A253 163 (1986) and A301 435 (1991); Woody CL et al, IEEE Trans. NS-36 536 (1989) and NS-39 123 (1992); and Wei ZY et al, Nucl. Instr. and Meth. B61 61 (1991).Google Scholar
24. Ma, DA and Zhu, RY,Nucl. Instr. and Meth. A332 113 (1993).Google Scholar
25. Zhu, RY,talk presented at this conference.Google Scholar
26. Anderson, DF, IEEE Trans. NS-36 137 (1989); and Moses WW and Derenzo SE, IEEE Trans. NS-36 173 (1989).Google Scholar
27. Woody, CL et al. , BNL-49866, submitted to IEEE Trans. Nucl. Sci. (1993).Google Scholar
28. Woody, CL,talk presented at this conference.Google Scholar
29.Crystal Clear Collaboration, talks presented at this conference.Google Scholar
30. Kobayashi, M et al. , Nucl. Instr. and Meth. A206 107 (1983); Laviron C and Lecoq P, Nucl. Instr. and Meth. A227 45 (1984); Bobbink GJ et al, Nucl. Instr. and Meth. A227 470 (1984); and Bieler C et al, Nucl. Instr. and Meth. A234 435 (1985).Google Scholar
31. Zhu, RY et al. , Nucl. Instr. and Meth. A302 69 (1991).10.1016/0168-9002(91)90493-AGoogle Scholar
32. Wei, ZY et al. , Nucl. Instr. and Meth. A297 163 (1990).Google Scholar
33. Kobayashi, M et al. , Nucl. Instr. and Meth. A335 509 (1993).10.1016/0168-9002(93)91237-HGoogle Scholar
34. Dally, EB and Hofstadter, R, Rev. Sci. Instr. 39 658 (1968); Anderson DE et al, Nucl. Instr. and Meth. A290 385 (1990); and Woody CL et al, IEEE Trans. NS-40 546 (1993).Google Scholar
35. Melcher, CL and Schweitzer, JS,Nucl. Instr. and Meth. A314 212 (1992) and IEEE Trans. NS-39 502 (1992).Google Scholar
36.Crystal Clear Collaboration, CERN-DRDC-93-31 (1993); and Woody CL et al, Phenix Note PX-63 (1993).Google Scholar
37. Kobayashi, M et al. , Nucl. Instr. and Meth. A333 429 (1993).Google Scholar
38. Suzuki, H, Ph. D. Thesis, Caltech (1994).Google Scholar
39. Worden, HM, Ph. D. Thesis, Cornell (1992).Google Scholar
40.Hamamatsu Photonics K.K., R4406 specification.Google Scholar
41. Suzuki, S,Proposal to Develop a Remote Processed Proximity Focused Phototube, July (1992).Google Scholar
42. Zhu, RY and Yamammoto, H, GEM TN-92-126 and CALT 68-1802 (1992).Google Scholar
43. Merk, M,Ph.D. Thesis, Nijmegen University, (1992).Google Scholar
44. , Clayton et al. , CMS TN/92-50 and IC HEP/93-1 (1992).Google Scholar
45.The K-Cs-Te cathode has been implemented in the Hamamatsu R4406 triode, and the Rb-Te cathode has been implemented in the R4480 PMT for BaF 2 readout. Both tubes use quartz windows and are commercially available.Google Scholar
46. Denes, P,GEM TN-91-06 (1991).Google Scholar
47. Schotanus, P et al. , IEEE Trans. NS–34 272 (1987) and Nucl. Instr. and Meth. A281 162 (1989); and Woody CLet al, IEEE Trans. NS-36 536 (1989).Google Scholar
48.See papers by Dafinei, Y,Hitlin, D, Newman, H,Winstein, B, Woody, CL and Zhu, RY, in Heavy Scintillators for Scientific and Industrial Applications, Proceedings of the “Crystal 2000” International Workshop, Editions Frontieres Volume C58, ed. Nataristefani, F. et al. , (September 1992).Google Scholar
49. Strathman, M, Reports on Material Characterization of BaF2 samples, (June-August 1992).Google Scholar
50. Zhou, TQ et al. , Nucl. Instr. and Meth. A258 58 (1987).Google Scholar
51. Chen, G et al. , in Supercollider 4, ed Nonte, J., Plenum Press, 809 (1992).Google Scholar
52. Li, PJ et al. , in Supercollider 4, ed Nonte, J., Plenum Press, 801 (1992); Yin ZW, Talk given in East Asia/Pacific - US Symposium on SSC, (May 1992).Google Scholar
53. Chen, LY et al. , GEM TN-92-129 (1992); Wang L et al, The Optical and Radiation Damage Properties of Barium Fluoride Crystals, talk presented in Shanghai BaF 2 Workshop, Shanghai, (May 1991).Google Scholar
54. Lea, Halliburton, University of West Virginia Optoelectronics Group Technical Reports, (April-August 1992).Google Scholar
55. Majewski, S. et al. , BaF2 Expert Panel Report, (February and August 1992).Google Scholar
56. Ma, DA and Zhu, RY,Nucl. Instr. and Meth. A333 422 (1993).Google Scholar
57. Stoll, SP,BNL Report, (August 1992).Google Scholar
58. Wuest, CR and Mauger, GJ, LLNL Report, (August 1992).Google Scholar
59. Shang, RC, Optical Annealing of BaF2 Crystals with Laser Beam, (August 1992).Google Scholar
60. Halliburton, LE et al. , West Virginia University Optoelectronics Group Technical Report, August 31, 1992.Google Scholar
61. Böringer, T et al. , Phys. Rev. Lett. 44: 1111 (1980); Mageras G et al, Phys. Rev. Lett. 46: 1115 (1981).Google Scholar
62. Chan, Y et al. , IEEE Trans. NS–25 333 (1978).Google Scholar
63. Ma, H et al. , Nucl. Instr. and Meth. A274 113 (1989); and Gratta G et al, L3 Internal Note 1557.Google Scholar
64. Ma, H et al. , Nucl. Instr. and Meth. A281 469 (1989); and Zhu RY, Nucl. Instr. and Meth. A306 145 (1991).Google Scholar
65. Bay, A et al. , Nucl. Instr. and Meth. A321 119 (1992).Google Scholar