Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T12:33:53.570Z Has data issue: false hasContentIssue false

Copper Diffusion Characteristics in Single Crystal and Polycrystalline TaN

Published online by Cambridge University Press:  11 February 2011

H. Wang
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695–7916
Ashutosh Tiwari
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695–7916
X. Zhang
Affiliation:
Materials Science & Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87544
A. Kvit
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695–7916
J. Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695–7916
Get access

Abstract

TaN has become a very promising diffusion barrier material for Cu interconnections, due to the high thermal stability requirement and thickness limitation for next generation ULSI devices. TaN has a variety of phases and Cu diffusion characteristics vary with different phases and microstructures. We have investigated the diffusivity of copper in single-crystal (NaCl-structured) and polycrystalline TaN thin films grown by pulsed laser deposition. The polycrystalline TaN films were grown directly on Si(100), while the single crystal films were grown with TiN buffer layers. Both of poly and single-crystal films with Cu overlayers were annealed at 500 °C, 600 °C, 650 °C, and 700 °C in vacuum to study the copper diffusion characteristics. The diffusion of copper into TaN was studied using STEM-Z contrast, where the contrast is proportional to Z (atomic number), and TEM. The diffusion distances are found to be about 5nm at 650°C for 30 min annealing. The diffusivity of Cu into single crystal TaN follows the relation D = (160±9.5)exp[-(3.27 ±0.1)eV/kBT]cm2s-1 in the temperature range of 600°C to 700°C. We observe that Cu diffusion in polycrystalline TaN thin films is nonuniform with enhanced diffusivities along the grain boundary.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moslehi, M. M., Lino, A. P., and Omsted, T., J. Vac. Sci. Technol. A 17, 1893(1999).Google Scholar
2. Murarka, P., Mater. Sci. Eng., R 19, 87 (1997).Google Scholar
3. Holloway, K., Fryer, P. M., Cabral, C. Jr, Harper, J. M. E., Bailey, P. J. and Kelleher, K. H., J. Appl. Phys., 71, 5433(1992).Google Scholar
4. Olowolafe, J. O., Li, J., and Mayer, J. W., Appl. Phys. Lett. 58, 469(1991).Google Scholar
5. Bicker, M., Pinnow, C. –U., Geger, U. and Schneider, S., Appl. Phys. Lett., 78, 3618(2001).Google Scholar
6. Oku, T., Kawakami, E., Uekubo, M., Takahiro, K., Yamaguchi, S., Murakami, M., Appl. Surf. Sci. 99, 265(1996).Google Scholar
7. Tsai, M. H., Sun, S. C., Lee, C. P., Chiu, H. T., Tsai, C. E., Chuang, S. H. and Wu, S. C., Thin Solid Films, 270, 531(1995).Google Scholar
8. Mori, H., Imahori, J., Oku, T. and Murakami, M., AIP-Conference-Proceedings, 418, 475(1998)Google Scholar
9. Stavrev, M., Wenzel, C., Moller, A. and Drescher, K., Appl. Sur. Sci., 91, 257(1995).Google Scholar
10. Lee, Y. K., khin, L. M., Kim, J., and Kangsoo, L., Mater. Sci. in Semiconductor Proc. 3, 179(2000).Google Scholar
11. Gerstenberg, D., and Calbick, C. J., J. Appl. Phys. 35, 402(1964).Google Scholar
12. Terao, N., Jpn. J. Appl. Phys. 10, 248(1971).Google Scholar
13. Wang, H., Tiwari, A., Kvit, A., Zhang, X., and Narayan, J., Appl. Phys. Lett., 80 (April, 2002).Google Scholar
14. Narayan, J., Tiwari, P., Chen, X., Singh, J., Chowdhury, R. and Zheleva, T., Appl. Phys. Lett. 61, 1290(1992). (J Narayan, U.S. Patent#5, 406,123, April 11,1995).Google Scholar
15. Narayan, J., and Washburn, J., Phil. Mag. 26, 1179(1972).Google Scholar
16. Glicksman, M. E., Diffusion in Solid, (Wiley Interscience Press, New York, NY, 2000), pp. 207.Google Scholar
17. Lim, K.Y., Lee, Y.S., Chung, Y.D., Lyo, I. W., Whang, C. N., Won, J. Y., and Kang, H. J., Applied Physics A 70, 431(2000).Google Scholar