Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T14:38:27.597Z Has data issue: false hasContentIssue false

A Computer Calorimetry Study of Segregation Free Energy: Cu in a Ni Grain Boundary

Published online by Cambridge University Press:  26 February 2011

Reza Najafabadi
Affiliation:
Department of Materials Science and Engineering M.I.T, Cambridge, MA 02139, U.S.A
Gretchen Kalonji
Affiliation:
Department of Materials Science and Engineering M.I.T, Cambridge, MA 02139, U.S.A
Get access

Abstract

A computer calorimetry technique employing molecular dynamics simulation has been used to calculate formation free energies for a copper impurity atom in a perfect nickel crystal in which the atoms are interacting through embedded-atom potentials. The method has also been used to calculate segregation free energies for a copper impurity at different site of a Σ=5 (031)[100] symmetical tilt boundary in nickel. Comparison of energetic and entropic contributions to segregation free energies indicate that knowledge of the entropic contribution is essential for prediciton of impurity site selection at grain boundaries above room temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hashimoto, M., Ishida, Y., Yamamoto, R., and Doyama, M., Acta Met., 32, 1, (1984).Google Scholar
2. Hashimoto, M., Ishida, Y., Yamamoto, R., Doyama, M., and Fujiwara, T. Srcipta Met., 16, 267, (1982).Google Scholar
3 Sutton, A.P and Vitek, V., Acta Met., 30, 2011 (1982).Google Scholar
4. Najafabadi, R. and Kalonji, G., Accepted Scripta Met.Google Scholar
5. Daw, M. S. and Baskes, M. I., Phys. Rev. Lett.,50, 1285 (1983).Google Scholar
6. Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B, 33, 7983 (1986).CrossRefGoogle Scholar
7. Daw, M. S., Surf. Sci., 166, L161 (1985).Google Scholar
8. Valleau, P. and Torrie, G.M., in Modern Theoretical Chemistry, 5, ed. by Berne, B. J. (Plenum, N.Y. 1976).Google Scholar
9. Bennett, C. H., J. Comp. Phys., 22, 245 (1976).Google Scholar
10. Deymier, P. and Kalonji, G., J. Chem. Phys., 85, 2937 (1986).Google Scholar
11. Deymier, P. and Kalonji, G., Acta Met., 35. 2719 (1987).Google Scholar
12. Parrinello, M. and Rahman, A., J. Appl. Phys., 52, 7182 (1981).Google Scholar
13. Press, W. H., Flannery, B. P., Tenkolsky, S. A., and Vetterling, W. T., Numerical Recipes, p.495, Cambridge University Press (1986)Google Scholar
14. Gehlen, P. C., Beeler, J. R., and Jaffee, R. I., eds., Interatomic Potentials and Simulation of Lattice Defects, Plenum Press (1972).Google Scholar