Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T10:39:06.819Z Has data issue: false hasContentIssue false

Competing Kinetic and Thermodynamic Processes in the Growth and Ordering of Ga0.5In0.5P

Published online by Cambridge University Press:  15 February 2011

Sarah R. Kurtz
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
J. M. Olson
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
D. J. Arent
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
A. E. Kibbler
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
K. A. Bertness
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
Get access

Abstract

The band gap of Ga0.5In0.5P is studied as a function of growth temperature, growth rate, and substrate misorientation. As each of these parameters is independently varied the band gap first decreases, then increases, resulting in “U” shaped curves. Each “U” shaped curve shifts if any other growth parameter is varied. The data presented here can be divided into two regions of parameter space. In the low temperature, low substrate misorientation, high growth rate region, the band gap is shown to decrease with increasing growth temperature, decreasing growth rate, and increasing substrate misorientation. In the high temperature, high substrate misorientation, low growth rate region, the opposite trends are observed. The implications of these data on the ordering mechanism are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gomyo, A., Suzuki, T. and Iijima, S., Phys. Rev. Lett. 60, 2645 (1988).Google Scholar
2. Gavrilovic, P., Dabkowski, F. P., Meehan, K., Williams, J. E., Stutius, W., Hsieh, K. C., Holonyak, N., Shahid, M. A. and Mahajan, S., J. Cryst. Growth 93,426 (1988).Google Scholar
3. Bernard, J. E., Ferreira, L. G., Wei, S.-H. and Zunger, A., Phys. Rev. B 38, 6338 (1988).Google Scholar
4. Bellon, P., Chevalier, J. P., Augarde, E., Andre, J. P. and Martin, G. P., J. Appl. Phys. 66, 2388 (1989).Google Scholar
5. Suzuki, T. and Gomyo, A., J. Cryst. Growth 111, 353 (1991).Google Scholar
6. Chen, G. S. and Stringfellow, G. B., Appl. Phys. Lett. 59, 324 (1991).Google Scholar
7. Froyen, S. and Zunger, A., Phys. Rev. Lett. 66, 2132 (1991).Google Scholar
8. Bernard, J. E., Froyen, S. and Zunger, A., Phys. Rev. B 44, 11178 (1991).Google Scholar
9. Kurtz, S. R., Olson, J. M. and Kibbler, A., Appl. Phys. Lett. 57, 1922 (1990).Google Scholar
10. Cao, D. S., Reihlen, E. H., Chen, G. S., Kimball, A. W. and Stringfellow, G. B., J. Cryst. Growth 109, 279 (1991).Google Scholar
11. Laks, D. B., Wei, S. H. and Zunger, A., Phys. Rev. Lett. 69, 3766 (1992).Google Scholar
12. Gomyo, A., Suzuki, T., Kobayashi, K., Kawata, S., Hotta, H. and Hino, I., private communication.Google Scholar
13. Buchan, N., Heuberger, W., Jakubowicz, A. and Roentgen, P., Inst. Phys. Conf. Ser. 120, 529 (1991).Google Scholar
14. Suzuki, M., Nishikawa, Y., Ishikawa, M. and Kokubun, Y., J. Cryst. Growth 113, 127 (1991).Google Scholar