Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T10:37:36.803Z Has data issue: false hasContentIssue false

CoGe1.5Se1.5: Synthesis and characterization

Published online by Cambridge University Press:  01 February 2011

R. Ertenberg
Affiliation:
Department of Physics, University of South Florida, Tampa, FL 33620
M. Beekman
Affiliation:
Department of Physics, University of South Florida, Tampa, FL 33620
J. Martin
Affiliation:
Department of Physics, University of South Florida, Tampa, FL 33620
G. Fowler
Affiliation:
Department of Physics, University of South Florida, Tampa, FL 33620
G.S. Nolas
Affiliation:
Department of Physics, University of South Florida, Tampa, FL 33620
Get access

Abstract

Polycrystalline CoGe1.5Se1.5 was synthesized and characterized. The compound is a member of the class of compounds with the skutterudite crystal structure. Synthesis assuming the above stoichiometry resulted in a n-type semiconductor with composition CoGe1.452Se1.379. The specimen exhibits a large room temperature Seebeck coefficient and resistivity. The electron mobility is very low and the thermal conductivity is lower than that of the binary skutterudite CoSb3. These properties can be attributed to the vacancies in the crystal lattice due to the non-stoichiometric nature of the specimen. The potential for thermoelectric applications of ternary skutterudites is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nolas, G.S., Morelli, D.T., and Tritt, T.M., Annu. Rev. Mater. Sci. 29, 89 (1999), and references therein.Google Scholar
2. Uher, C., in Semiconductors and Semimetals, Vol. 69, edited by Tritt, Terry M. (Academic Press, New York, NY, 2000), pp. 139254, and references therein.Google Scholar
3. Nolas, G. S., Sharp, J. W. and Goldsmid, J. H., Thermoelectrics: Basic Principles and New Materials Developments (Springer-Verlag, Heidelberg, 2001).Google Scholar
4. Slack, G.A. and Tsoukala, V., J. Appl. Phys. 76, 1665 (1994).Google Scholar
5. Slack, G.A., Symp. Proc. Mater. Res. Soc. 478, 47 (1997).Google Scholar
6. Caillat, T., Fleurial, J.-P., and Borshchevsky, A.J., Cryst. Growth 166, 722 (1996).Google Scholar
7. Korenstein, R., Soled, S., Wold, A. and Collin, G., Inorg. Chem. 16, 2344 (1977).Google Scholar
8. Lyons, A., Gruska, R. P., Case, C., Subbarao, S. N. and Wold, A., Mat. Res. Bul. 13, 125 (1978).Google Scholar
9. Dyck, J. S., Chen, W., Yang, J., Meisner, G. P. and Uher, C., Phys. Rev. B 65, 115204 (2002).Google Scholar
10. Anno, H., Hatada, K., Shimizu, H., Matsubara, K., Notohara, Y., Sakakibara, T., Tashiro, H. and Motoya, K., J. Appl. Phys. 83, 5270 (1998).Google Scholar
11. Yang, J., Morelli, D. T., Meisner, G. P., Chen, W., Dyck, J. S., and Uher, C., Phys. Rev. B 65, 094115 (2002).Google Scholar
12. Nolas, G. S., Cohn, J. L., and Slack, G. A., Phys. Rev. B 58, 164 (1998).Google Scholar
13. Yang, J., Meisner, G. P., Morelli, D. T., and Uher, C., Phys. Rev. B 63, 014410 (2000).Google Scholar
14. Callaway, J., Phys. Rev. 113, 1046 (1959).Google Scholar
15. Dudkin, L. D. and Abrikosov, N. Kh., Sov. Phys. Solid State 1, 126 (1959).Google Scholar
16. Sharp, J. W., Jones, E. C., Williams, R. K., Martin, P. M., and Sales, B. C., J. Appl. Phys. 78, 1013 (1995).Google Scholar
17. Johnson, V. A., Progress in Semiconductors, edited by Gibson, A. F. (Heywood, London, 1956), Vol. 1, pp. 6597.Google Scholar
18. Slack, G. A. and Hussain, M. A., J. Appl. Phys. 70, 2694 (1991).Google Scholar