Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T07:42:19.026Z Has data issue: false hasContentIssue false

Cavity Nucleation and Evolution in He-Implanted Si and GaAs

Published online by Cambridge University Press:  21 February 2011

D. M. Follstaedt
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Mail Stop 1056, Albuquerque, NM 87185
S. M. Myers
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Mail Stop 1056, Albuquerque, NM 87185
G. A. Petersen
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Mail Stop 1056, Albuquerque, NM 87185
J. C. Barbour
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Mail Stop 1056, Albuquerque, NM 87185
Get access

Abstract

The criteria for forming stable cavities by He implantation and annealing are examined for Si and GaAs. In Si, implanting at room temperature requires a minimum of 1.6 at.% He to form a uniformly dense layer of cavities after annealing at 700°C. Near this threshold, cavities are located at dislocations and planar defects. Peak He concentrations just above 1.6 at.% produce narrow layers of cavities at the projected range. In GaAs, room-temperature implantation followed by annealing results in exfoliation of the surface layer. Cavities were formed instead by implanting Ar followed by overlapping He, both at 400°C, with additional annealing at 400°C to outgas the He. This method forms 1.5-3.5 nm cavities that are often on {111} planar defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Griffioen, C.C., Evans, J.H., de Jong, P.C. and Van Veen, A., Nucl. Inst. Meth. B27, 417 (1987).Google Scholar
2 Myers, S. M., Follstaedt, D. M., Stein, H. J., Wampler, W. R., Phys. Rev. B47, 13, 380 (1992).Google Scholar
3 Wampler, W. R., Myers, S. M. and Follstaedt, D. M., Phys. Rev. B48, 4492 (1993).Google Scholar
4 Myers, S. M., Stein, H. J. and Follstaedt, D. M., Phys. Rev. B51, 9742 (1995).Google Scholar
5 Myers, S. M., Follstaedt, D. M., Bishop, D. M. and Medernach, J. D., in Semiconductor/Silicon 1994. eds. Huff, H. R., Bergholz, W. and Sumino, K. (The Electrochemical Society, Vol. 94–10, Pennington, NJ, 1994) p. 808.Google Scholar
6 Rainieri, V., Battaglia, A. and Rimini, E., Nucl. Inst. Meth. B96, 249 (1995).Google Scholar
7 Wong-Leung, J., Ascheron, C. E., Petravic, M., Elliman, R. G. and Williams, J. S., Appl. Phys. Lett. 66, 1231 (1995).Google Scholar
8 Follstaedt, D. M., Appl. Phys. Lett. 62, 1116 (1992).Google Scholar
9 Eaglesham, D. J., White, A. E., Feldman, L. C., Moriya, N. and Jacobson, D. C., Phys. Rev. Lett. 70, 1643 (1993).Google Scholar
10 van Veen, A., Schut, H., Westerduin, K. T., Ijpma, M. R., Mat. Res. Soc. Symp. Proc. 373, 499 (1995).Google Scholar
11 Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985); J. F. Ziegler, private communication, 1990. Google Scholar
12 Myers, S. M. and Follstaedt, D. M., to be published in Journal of Applied Physics, Jan., 1996.Google Scholar