Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T14:35:09.253Z Has data issue: false hasContentIssue false

Carbon Nanotube Reinforced Bombyx mori Nanofiber Composites by the Electrospinning Process

Published online by Cambridge University Press:  01 February 2011

Jonathan Ayutsede
Affiliation:
Fibrous Materials Laboratory, Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104
Milind Gandhi
Affiliation:
School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104
Sachiko Sukigara
Affiliation:
Faculty of Education and Human Sciences, Niigata University, Japan
Frank Ko*
Affiliation:
Fibrous Materials Laboratory, Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104
*
E-mail:fko@coe.drexel.edu Tel:(215) 895–1640, Fax: (215) 895–6684
Get access

Abstract

A nanocomposite of silkworm silk and single wall carbon nanotubes (SWNT) was produced by the electrospinning process. Regenerated silk fibroin dissolved in a dispersion of carbon nanotubes in formic acid was electrospun and the morphological, chemical and mechanical properties of the electrospun nanofibers were examined. The mechanical properties of the SWNT reinforced fiber show increases in Young's modulus up to 460 % in comparison with the un-reinforced aligned fiber.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ogho, K, Zhao, C, Kobayashi, M, Asakura, T, Polymer. 2003, 44, 841846.Google Scholar
2. Matthews, JA, Wnek, GE, Simpson, DG, Bowlin, GL, Biomacromolecules. 2002, 3, 232238.Google Scholar
3. Doshi, J, Reneker, D, J. Electrostatics. 1995, 35, 151160.Google Scholar
4. Zarkoob, S, Reneker, DH, Eby, RK, Hudson, SD, Ertley, D, Adams, WW, Polymer Preprints. 2003, 39, 244245.Google Scholar
5. Lau, K, Chipara, M, Ling, H, Hui, D, Composites: Part B. 2004, 35, 95101.Google Scholar
6. Che, G, Lakshmi, BB, Fisher, ER, Martin, CR, Nature. 1998, 393, 346349.Google Scholar
7. Frank, S, Poncharal, P, Wang, ZL, De Heer, WA, Science. 1998, 280, 17441746.Google Scholar
8. Planeix, JM, Coustel, N, Coq, B, Brotons, V, Kumbhar, PS, Dutartre, R, Geneste, P, Bernier, P, Ajayan, PM, J. Am. Chem. Soc. 1994, 116, 79357936.Google Scholar
9. Panhuis, M, Chemistry & Biology. 2003, 10, 897898.Google Scholar
10. Sen, R, Zhao, B, Perea, D, Itkis, M, Hu, H, Love, J, Bekyarova, E, Haddon, R, Nanoletters. 2004, 4, 459464.Google Scholar
11. Sano, M, Kamino, A, Okamura, J, Shinkai, S, Science. 2001, 293, 12991301.Google Scholar
12. Riggs, JE, Gou, Z, Carroll, DL, Sun, YP, J. Am. Chem. Soc. 2000, 122, 58795880.Google Scholar
13. Jiang, L, Gao, L, Sun, J, J. Colloid and Interface Science. 2003, 260, 8994.Google Scholar
14. Chen, J, Rao, AM, Lyuksyutov, S, Itkis, ME, Hamon, MA, Hu, H, Cohn, RW, Eklund, PC, Colbert, DT, Smalley, RE, Haddon, RC, J. Phys. Chem. 2001, 105, 25252528.Google Scholar
15. O'Connell, MJ, Boul, P, Ericson, L, Huffman, C, Wang, Y, Haroz, E, Kuper, C, Tour, J, Ausman, KD, Smalley, RE, Chem. Phys. Lett. 2001, 342, 265271.Google Scholar
16. Li, D, Wang, H, Zhu, J, Wang, X, Lu, L, Yang, X, J. Materials Science Letters. 2003, 22, 253255.Google Scholar
17. Balavione, F, Schultz, P, Richard, C, Mallouh, V, Ebbesen, TW, Mioskowski, C, Angew. Chem. Int. Ed. 1999, 38, 19121915.Google Scholar
18. Sukigara, S, Gandhi, M, Ayutsede, J, Micklus, M, Ko, F, Polymer. 2003, 44, 57215727.Google Scholar
19. Um, IC, Kweon, HY, Lee, KG, Park, YH, Int. J. Biological Macromolecules. 2003, 33, 203213.Google Scholar
20. Um, IC, Kweon, HY, Hudson, S, Int. J. Biological Macromolecules. 2001, 29, 9197.Google Scholar
21. Ayutsede, J, Gandhi, M, Sukigara, S, Micklus, M, Chen, H, Ko, F. Polymer (in press).Google Scholar