Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T14:44:22.442Z Has data issue: false hasContentIssue false

Brillouin Scattering from Gels

Published online by Cambridge University Press:  25 February 2011

F. Mallamace
Affiliation:
Istituto Tecniche Spettroscopiche del C.N.R, Villagio S. Agata, Messina, 98166, ITALY
N. Micali
Affiliation:
Istituto Tecniche Spettroscopiche del C.N.R, Villagio S. Agata, Messina, 98166, ITALY
C. Vasi
Affiliation:
Istituto Tecniche Spettroscopiche del C.N.R, Villagio S. Agata, Messina, 98166, ITALY
F. Sciortino
Affiliation:
Center For Polymer Studies and Department of Physics Boston University, Boston, MA 02215, USA
R. Bansil
Affiliation:
Center For Polymer Studies and Department of Physics Boston University, Boston, MA 02215, USA
S. Pajevic
Affiliation:
Center For Polymer Studies and Department of Physics Boston University, Boston, MA 02215, USA
Get access

Abstract

We have investigated the question of heterogeneity in gels using Brillouin scattering, depolarized Rayleigh scattering and dynamic light scattering measurements on methylmethacrylate (MMA) gels crosslinked with varying amount of ethylene-dimethacrylate (EDMA). We find that the k dependence of the phase velocity changes on increasing the cross-link content. For higher concentrations of crosslink we observe maxima and minima in the k dependence of the phase velocity which e associate with spatial inhomogeneities in the gel, with the formation of regions of low and high cross-link density, respectively. This micro-phase separation occurs around crosslink content of 3-4 %. At this same concentration depolarized Rayleigh measurements show a marked decrease in the number of MMA side groups capable of rotating.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Biological and Synthetic Polymer Networks, ed Kramer, O., Elsevier Applied Science. 1988.CrossRefGoogle Scholar
2. Tanaka, T., Hocker, L. O., and Benedek, G., J. Chem. Phys. Vol. 59, 5151 1973 CrossRefGoogle Scholar
3. Mendes, E., Lindner, P., Buzier, M., Boue, F., and Bastide, J. Phys Rev Lett, Vol.66, 1595 1991 CrossRefGoogle Scholar
4. Joosten, J. G. H., Geladé, E. T. F. and Pusey, P. N., Phys. Rev. A, Vol. 42, 2161 1990 Google Scholar
5. Gennes, P. G. de, Scaling Concepts in Polymer Physics, Cornell U. Press, Ithaca, 1979.Google Scholar
6. Richards, E. G. and Temple, C. J., Nature Phys. Sci. Vol. 230, 92 1971 Google Scholar
7. Gupta, M. K. and Bansil, R., J. Polyin. Sci., Vol. 21, 969 1983 Google Scholar
8. Bansil, R., Willings, M., and Herrinann, H. J., J. Phys. A, Vol. 19, L1209 1986 Google Scholar
9. Marqusee, J.A. and Deutch, J.M., J. Chem. Phys., Vol. 75, 5239 1981 Google Scholar
10. Kato, E., J. Phys. Soc. Japan. Vol 56, 1779 1987 Google Scholar
11. Ye, L., Weitz, D.A., Scheng, P.. Bhattacharya, S., Huang, J.S. and Higgins, M.J., Phys. Rev. Lett., Vol. 64, 263, (1989)Google Scholar
12. Nath, J. and , Rashmi, J. Chem. Soc. Faraday Trans., Vol. 86, 3399 1990 Google Scholar