Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T03:35:37.436Z Has data issue: false hasContentIssue false

Analysis of Oxide Surfaces by High Resolution Transmission Electron Microscopy

Published online by Cambridge University Press:  25 February 2011

W. Krakow
Affiliation:
IBM Corporation, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 USA
V. Castano
Affiliation:
IBM Corporation, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 USA
Get access

Abstract

We have investigated the surface structure of oxides with low atomic number metallic components (Cu and Al) using two different high resolution electron microscopy techniques. First, using flat-on microscopy normal to the surface, we have studied the epitaxy of vapor deposited Cu on single crystal (110) and (111) surfaces of Au and the subsequent oxidation of the Cu under ambient conditions. Three structural variants of (110) oriented Cu2O were found relative to the underlying ( 11I) Au film and the oxide surface has a shifted, 1/2[110], (1 × 1) surface reconstruction. A (211) Cu2O structure was found for the (110) Au film orientation. This case has two structural variants at 90° to each other where one of these variants exhibits surface roughness of ∼5Å. The second structure has atomic step heights of ∼6Å, and a rectangular surface supercell structure of ∼3.0Å × 7.39Å due to (211) bulk lattice layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cherns, D., Phil. Mag. 30, 549 (1974).Google Scholar
2. Krakow, W., Ultramicrosc. 4, 55 (1979).Google Scholar
3. Krakow, W., Sur. Sci. 111,503 (1981).Google Scholar
4. Krakow, W., Thin Solid Films 93, 235 (1982).Google Scholar
5. Marks, L.D. and Smith, D.J., Nature 26, 316 (1983), and Sur. Sci. 143, 495 (1984).Google Scholar
6. Yagi, K., Takayanagi, K., Kobayashi, K., Osakabe, N. and Honjo, G., Sur. Sci. 86, 174 (1979).Google Scholar
7. Takayanagi, K., Sur. Sci. 104, 527 (1981).CrossRefGoogle Scholar
8. Tanishiro, Y., Kanamori, H., Takayanagi, K., Yagi, K. and Honjo, G., Sur. Sci. 111, 395 (1981).Google Scholar
9. Krakow, W., Sur. Sci. 140, 137 (1984).Google Scholar
10. Krakow, W., Mat. Res. Sci. Symp. Proc. 31, (Elsevier Sci. Pub. Co., Inc., (1984)), p. 189.Google Scholar
11. Krakow, W., Proc. 42nd Ann. EMSA Meeting, (San Francisco Press, (1984)), p. 656.Google Scholar
12. Lawless, K.L. and Gwathmey, A.T., Acta Met. 4, 153 (1956).Google Scholar
13. Heinemann, K., Rao, D.B. and Douglass, D.L., Oxidation of Metals 9, 379 (1975).Google Scholar
14. Ambrose, B.K., Goulden, D.A. and Howie, A., Proc. Develop. Electron Microscop. and Analysis, (Academic Press, London, 1977), p. 445.Google Scholar
15. Ho, J.H. and Vook, R.W., Phil. Mag. 36, 1051 (1977).Google Scholar
16. Milne, R.H. and Howie, A., Phil. Mag. 49, 665 (1984).Google Scholar
17. Guan, R., Hashimoto, H. and Yoshida, T., Acta Cryst. B 40, 109 (1984).CrossRefGoogle Scholar
18. Guan, R., Hashimoto, H. and Kuo, K.H., Acta Cryst. B 40, 560 (1984).Google Scholar
19. Knozinger, H. and Ratnasamy, P., Catal. Rev.-Sci. Eng., 17, 31 (1978).Google Scholar
20. Morterra, C., Ghiotti, G., Garrone, E. and Bociuzzi, F., Chem. Soc. J., Faraday Trans. 72, 2722 (1976).Google Scholar
21. French, T.M. and Samorjai, G.A., J. Phys. Chem. 74, 2489 (1970).Google Scholar
22. Renou, A., J. Catalysis 78, 77 (1982).Google Scholar
23. Heinemann, K., Anton, R. and Poppa, H., Proc. 39th Annual EMSA Meeting, Atlanta, GA, 158 (1981).Google Scholar
24. Morrissey, K.J. and Carter, C.B., J. Amer. Cer. Soc., 292 (1984).Google Scholar
25. Morrissey, K.J., Czanderna, K.K., Carter, C.B. and Merrill, R.P., J. Amer. Cer. Soc., (1983).Google Scholar
26. Kronberg, M.L., Acta Metall. 5, 507 (1957).Google Scholar