Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T11:37:17.450Z Has data issue: false hasContentIssue false

Adhesion and Cell Viability of Normal Human Osteoblasts (NHOst) on Scaffolds of Poly (3-hydroxybutyrate)

Published online by Cambridge University Press:  13 February 2015

Maraolina Domínguez-Díaz
Affiliation:
Laboratorio de Nanopolimeros y Coloides, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, 62210, MEXICO. Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62209, MEXICO.
Angelica Meneses-Acosta
Affiliation:
Laboratorio de Biotecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos, 62209, MEXICO.
Angel Romo-Uribe*
Affiliation:
Laboratorio de Nanopolimeros y Coloides, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, 62210, MEXICO.
*
*To whom correspondence should be addressed: aromo-uribe@fis.unam.mx
Get access

Abstract

Biodegradable Normal Human Osteoblast (NHOst) cells were inoculated into the polymer scaffolds of poly(β-hydroxybutyrate) (PHB) obtained from a specially developed strain of Azotobacter vinelandii. Cell adhesion is essential to promote growth on scaffolds for tissue engineering. Thus, in this research we focused on the adhesion of osteoblast cells to PHB scaffolds produced by solution casting and electrospinning. Cell viability was also investigated up to 168 hrs. Water contact angle on the PHB scaffolds was determined prior to the cells inoculation. The contact angle is usually related to the ability of different cell strains to adhere to a given material. The as cast film exhibited a contact angle α=72° whereas for the electrospun membrane α=102°, thus in theory cell adhesion would be greater for the cast film. Biological testing was carried out on plates of 24 wells; cell viability was determined by Trypan Blue, cell morphology by optical microscopy, and cell nuclei integrity by staining with Acridine orange. Parallel studies were carried out on control (empty) wells. Microscopy observations 168 hrs after cell inoculation showed larger quantities of osteoblast cells in the wells containing PHB scaffolds and the cell nuclei were still active. Moreover, it was found that the cells grew inside the PHB scaffolds and the cell viability was slightly greater for the electrospun scaffold. Interestingly, the time to remove the cells from the scaffolds (film and membranes) was increasing function of the cell culture time, therefore suggesting that PHB promotes adhesion of Normal Human Osteoblast cells to its surface.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sudesh, K., Abe, H., in Practical Guide to Microbial Polyhydroxyalkanoates, (Smithers Rapra, United Kingdom, 2010), p. 1, 18.Google Scholar
Pollet, E., Avérous, L., in Biopolymers – New Materials for Sustainable Films and Coatings, edited by Plackett, D. (John Wiley and Sons, Ltd. Publishers, United Kingdom, 2011) p. 73.Google Scholar
Bonartsev, A.P., Bonartseva, G.A., Shaitan, K.V., Kirpichnikov, M.P.. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry 5, 10 (2011).CrossRefGoogle Scholar
Wang, Y.-W., Wu, Q., Chen, G.-Q.. Biomaterials 25, 669 (2004).CrossRefGoogle Scholar
Mendonca, R.H., de Oliveira Meiga, T., Ferreira da Costa, M., da Silva Moreira Thiré, R.M.. J. Appl. Polym. Sci. 129, 614 (2013).CrossRefGoogle Scholar
Bonartsev, A.P., Yakovlev, S.G., Zharkova, I.I., Boskhomdzhiev, A.P., Bagrov, D.V., Myshkina, V.L., Makhina, T.K., Kharitonova, E.P., Samsonova, O.V., Feofanov, A.V., Voinova, V.V., Zernov, A.L., Efremov, Y.M., Bonartseva, G.A., Shaitan, K.V., Kirpichnikov, M.P.. BMC Biochemistry 14, 1 (2013).CrossRefGoogle Scholar
Saadat, A., Behnamghader, A.A., Karbasi, S., Abedi, D., Soleimani, M., Shafiee, A.. Biotechnology and Bioprocess Engineering 18, 587 (2013).CrossRefGoogle Scholar
Medvecky, L., Giretova, M., Stulajterova, R.J.. Mater. Sci.: Mater. Med. 25, 777 (2014). DOI 10.1007/s10856-013-5105-0 Google Scholar
Ramier, J., Bouderlique, T., Stoilova, O., Manolova, N., Rashkov, I., Langlois, V., Renard, E., Albanese, P., Grande, D.. Mater. Sci. Eng. C-Mater. Biol. Appl. 38, 161 (2014).CrossRefGoogle Scholar
Ravi, M., Paramesh, V., Kavita, S.R., Anuradha, E., Solomon, F.D.P.. J. Cell. Physiol. 230, 16 (2015).CrossRefGoogle Scholar
Domínguez-Díaz, M., Romo-Uribe, A., Flores, A., Cruz-Silva, R.. Morphology-induced hydrophobic behavior of electrospun polyhydroxyalkanoate membranes. Mater. Res. Soc. Symp. Proc. 1466, mrss12-1466-tt02-07 (2012) doi:10.1557/opl.2012.1256 CrossRefGoogle Scholar
Domínguez-Díaz, M., Meneses-Acosta, A., Romo-Uribe, A., Peña, C., Segura, D., Espin, G.. Eur. Polym. J. 63, 101 (2015).CrossRefGoogle Scholar
Sombatmankhong, K., Suwantong, O., Waleetorncheepsawat, S., Supaphol, P.. J. Polym. Sci. Part B: Polym. Phys. 44 2923 (2006)CrossRefGoogle Scholar
Zhu, M., Zuo, W., Yu, H., Yang, W., Chen, Y.. J. Mater. Sci. 41, 3793 (2006).CrossRefGoogle Scholar
Peppas, N.A., Sefton, M.V., in Molecular and Cellular Foundations of Biomaterials, (Elsevier, EUA, 2004), p. 30.Google Scholar