Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-13T10:37:38.880Z Has data issue: false hasContentIssue false

Wandering Dangling Bond Model for Staebler-Wronski Effects

Published online by Cambridge University Press:  10 February 2011

Masatoshi Ikeda
Affiliation:
Dept. of E& CE, Fac. of Eng., Kanazawa University, Kanazawa 920-8667, JAPAN
Akio Kitagawa
Affiliation:
Dept. of E& CE, Fac. of Eng., Kanazawa University, Kanazawa 920-8667, JAPAN
Masakuni Suzuki
Affiliation:
Dept. of E& CE, Fac. of Eng., Kanazawa University, Kanazawa 920-8667, JAPAN, suzuki@ec.t.kanazawa-u.ac.jp
Get access

Abstract

A new model for Staebler-Wronski effects is proposed. Defect pairs of (D°:D+) or (D°:D°) as a precursor of neutral dangling bonds are produced by electron-phonon interactions. Most of the defect-pairs immediately rebond after creation, but some of them separate resulting in wandering dangling bonds. The separation and the wandering take place through bond-switching. When wandering dangling bonds collide, most of them make covalent bonds via defect-pairs. The rate equations based on these processes are given and annealing effects on photo-generated dangling bonds are studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Staebler, D.L., Wronski, C.R., Appl.Phys. 31 p.292 (1977).Google Scholar
2 Hirabayashi, I., Morigaki, K. & Nitta, S., Jpn.J.Appl.Phys.,19 L357 (1980).Google Scholar
3 Dersch, H., Stuke, J. & Beichler, J., Appl.Phys.Lett. 38 p.456 (1981).Google Scholar
4 Staebler, D.L., Crandall, R.L. & Williams, R., Appl.Phys.Lett. 39 p.733 (1981).Google Scholar
5 Sakata, I., Hayashi, Y., Karasawa, H. & Yamanaka, M., Solid State Commun. 45 p. 1055 (1983).Google Scholar
6 Nakamura, M., Tsuda, S., Takahama, T., Nishikuni, M., Watanabe, K., Ohnishi, M. & Kuwano, Y., AIP Conf.Proc.No. 120 p.303 (1984).Google Scholar
7 Krühler, W., Pfleiderer, H., Plhittner, R. & Stetter, W., AIP Conf.Proc.No. 120 p. 311 (1984).Google Scholar
8 Pankove, J.I. &Berkkeyheiser, J.E., Appl.Phys.Lett. 37 p.705 (1980).Google Scholar
9 Stutzmann, M., Jackson, W.B. & Tsai, C.C., Phys.Rev.B 32 p.23 (1985).Google Scholar
10 Adler, D., Solar Cells, 9 p. 13 Google Scholar
11 Branz, H.M. & Silver, M., Phys.Rev.B 42 p.7420 (1990).Google Scholar
12 Orita, N., Matumura, T. & Yoshisa, H., J.Non-cryst.Solid. 198–200 p.347 (1996).Google Scholar
13 Ishii, N., Kumeda, M. & Shimizu, T., Jpn.J.Appl.Phys. 24 L244 (1985).Google Scholar
14 Redfield, D. & Bube, R.H., Phys.Rev.Lett. 65 p.464 (1990).Google Scholar
15 Smith, Z.E. & Wagner, S., Phys.Rev.Lett. 59 p.688 (1987).Google Scholar
16 Street, R.A. & Winer, K., Phys Rev. B 40 6236 (1989).Google Scholar
17 Xu, X., Sasaki, H., Morimoto, A., Kumeda, M. & Shimizu, T., Phys.Rev.B 41 10049 (1990).Google Scholar
18 Pantelides, S.T., Phys.Rev.B 36 p.3479 (1987).Google Scholar
19 Morigaki, K., Jpn.J.Appl.Phys. 27 p. 163 (1988).Google Scholar
20 Ikeda, M., Natsume, M., kitagawa, A., Suzuki, M., in preparation.Google Scholar
21 Yamasaki, S. & Isoya, J., J.Non-cryst.Solids, 164–166 p.169 (1993).Google Scholar