Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-17T16:58:51.112Z Has data issue: false hasContentIssue false

Turnover of Texture in low rate Sputter-Deposited Nanocrystalline Molybdenum Films

Published online by Cambridge University Press:  10 February 2011

Tilo P. Drüsedau
Affiliation:
Institut für Experimentelle Physik / Abt. Festkörperphysik der Otto-von-Guericke-Universität, PF 4120, D - 39016 Magdeburg, Germany
Frank Klabunde
Affiliation:
Institut für Experimentelle Physik / Abt. Festkörperphysik der Otto-von-Guericke-Universität, PF 4120, D - 39016 Magdeburg, Germany
Mirko Lohmann
Affiliation:
Institut für Experimentelle Physik / Abt. Festkörperphysik der Otto-von-Guericke-Universität, PF 4120, D - 39016 Magdeburg, Germany
Thomas Hempel
Affiliation:
Institut für Experimentelle Physik / Abt. Festkörperphysik der Otto-von-Guericke-Universität, PF 4120, D - 39016 Magdeburg, Germany
Jurgen Bläsing
Affiliation:
Institut für Experimentelle Physik / Abt. Festkörperphysik der Otto-von-Guericke-Universität, PF 4120, D - 39016 Magdeburg, Germany
Get access

Abstract

The crystallite size and orientation in molybdenum films prepared by magnetron sputtering at a low rate of typical 1 Å/s and a pressure of 0.45 Pa was investigated by X-ray diffraction and texture analysis. The surface topography was studied using atomic force microscopy. Increasing the film thickness from 20 nm to 3 μm, the films show a turnover from a (110) fiber texture to a (211) mosaic-like texture. In the early state of growth (20 nm thickness) the development of dome-like structures on the surface is observed. The number of these structures increases with film thickness, whereas their size is weakly influenced. The effect of texture turnover is reduced by increasing the deposition rate by a factor of six, and it is absent for samples mounted above the center of the magnetron source. The effect of texture turnover is related to the bombardment of the films with high energetic argon neutrals resulting from backscattering at the target under oblique angle and causing resputtering. Due to the narrow angular distribution of the reflected argon, bombardment of the substrate plane is inhomogeneous and only significant for regions close to the erosion zone of the magnetron.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hoffmann, D. W. and McCune, R. C., in Handbook of plasma processing technology, edited by Rossnagel, S. M., Cuomo, J. J. and Westwood, W. D. (Noyes Publications, Park Ridge, NJ, 1989) pp. 483.Google Scholar
2. Vink, T. J., Somers, M. A. J., Daams, J. L. C. and Dirks, A. G., J. Appl. Phys. 70, 4301 (1991).Google Scholar
3. Andritschky, M. and Teixeira, V., Vacuum 43, 455 (1992).Google Scholar
4. Adams, D. P., Parfitt, L. J., Bilello, J. C., Yalisove, S. M. and Rek, Z. U., Thin Solid films 266, 52 (1995).Google Scholar
5. Klabunde, F., Lohmann, M., Biasing, J. and Drüsedau, T., J. Appl. Phys. 80, 6266 (1996).Google Scholar
6. Slaughter, J. M., Schulze, D. W., Hills, C. R., Mirane, A., Stalio, R., Watts, R. N., Tarrio, C., Lucatorto, T. B., Krumrey, M., Mueller, P. and Falco, C. M., J. Appl. Phys. 76, 2144 (1994).Google Scholar
7. Stearns, D. G., Rosen, R. S. and Vernon, S. P., J. Vac. Sci. Technol. A 9, 2662 (1991).Google Scholar
8. Drüsedau, T., Klabunde, F., Lohmann, M. and Biasing, J., Phys. Stat. Sol. (b) 196, K21 (1996).Google Scholar
9. Drüsedau, T., Klabunde, F., Veit, P. and Hempel, T., Phys. Stat. Sol. (a) 161, in the press (1997).Google Scholar
10. Gesang, W. R., Oechsner, H. and Schoof, H., Nuclear Instr. Methods 132, 687 (1976).Google Scholar
11. Wasa, K. and Hayakawa, S., Handbook of Sputter Deposition Technology. (Noyes Publications, Park Ridge, 1991).Google Scholar
12. Somekh, R. E., J. Vac. Sci. Technol. A 2, 1285 (1984).Google Scholar
13. Robinson, R. S., J. Vac. Sci. Technol. A 16, 185 (1979).Google Scholar
14. Ying, F., Smith, R. W. and Srolovitz, D. J., Appl. Phys. Lett. 69, 3007 (1996).Google Scholar