Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T14:21:34.715Z Has data issue: false hasContentIssue false

Third-Order Optical Susceptibilities of Molecular and Polymeric Materials. Symmetry, Frequency, and Chromophore Structure Dependence as Probed by π-Electron Theory

Published online by Cambridge University Press:  26 February 2011

D. Li
Affiliation:
Department of Chemistry and Materials Research CenterNorthwestern University, Evanston, IL 60208
T. J. Marks
Affiliation:
Department of Chemistry and Materials Research CenterNorthwestern University, Evanston, IL 60208
M. A. Ratner
Affiliation:
Department of Chemistry and Materials Research CenterNorthwestern University, Evanston, IL 60208
Get access

Abstract

Third-order optical susceptibilities (γijkl) can be efficiently analyzed for a variety of molecular structures employing perturbation theory and a PPP-SCF-SECI-DECI π-electron model Hamiltonian. The key, frequency tripling second hyperpolarizability γijkl(−3ω;ω,ω,ω) is calculated with full single and double CI. It is found that double excitations play a major role in third-order processes, and that γijkl, like the polarizability αij, is sensitive largely to the overall size (volume) of the π system, although charge transfer excitations may also contribute. The frequency dependence of v and correlations between γijkl and conjugation length are found for a series of trans polyenes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heeger, A. J., Orenstein, J., and Ulrich, D. R., Eds. Nonlinear Optical Properties of Polymers, Mats. Res, Soc, Sympos, Proc., 109 (1988).Google Scholar
2. Chemla, D. S. and Zyss, Y., Eds. Nonlinear Optical Properties of Organic Molecules and Crvstals. Academic: New York 1987; Vols. 1,2.Google Scholar
3. Khanarian, G., Ed. Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications. SPIE, 682 (1986).Google Scholar
4. Schweig, A., Chem. Phys. Lett. 1, 163 (1967).CrossRefGoogle Scholar
5. Schweig, A., Chem. Phys. Lett. 1, 195 (1967).Google Scholar
6. Buckingham, A. D., Trans. Faraday Soc. 34, 1035 (1956).Google Scholar
7. Docherty, V. J., Pugh, D., and Morley, J. O., J. Chem. Soc. Faraday Trans. 281, 1179 (1985); S. J. Lalama and A. F. Garito, Phys. Rev. A20, 1179 (1979).CrossRefGoogle Scholar
8. McIntyre, E. F. and Hameka, H. F., J. Chem. Phys. 70, 2215 (1979).Google Scholar
9. Hameka, H. F., J. Chem. Phys. 67, 2935 (1977).CrossRefGoogle Scholar
10. McIntyre, E. F. and Hameka, H. F., J. Chem. Phys. 68, 3481 (1978).CrossRefGoogle Scholar
11. McIntyre, E. F. and Hameka, H. F., J. Chem. Phys. 69, 4814 (1978).CrossRefGoogle Scholar
12. Rustagi, K. C. and Ducuing, J., Opt. Comm. 10(3), 258 (1974).Google Scholar
13. Pierce, B. M., Mat. Res. Soc. Symp. Proc. 109, 109 (1988), and references therein.Google Scholar
14. Garito, A. F., Heflin, J. R., Wong, K. Y., and Zamani-Khamiri, O., Mat. Res. Soc. Symp. Proc., 109, 91 (1988), and references therein.Google Scholar
15. Sekino, H., Bartlett, R. J., J. Chem. Phys. 85, 976 (1986); 84, 2726 (1986); J. Oddershede, E. N. Svendsen, Chem. Pnys. 64,359 (1982).Google Scholar
16. Dory, M., Bodart, V. P., Delhalle, J., Andre, J. M. and Bredas, J. L., Mat. Res. Soc. Symp. Proc. 109, 239 (1988).CrossRefGoogle Scholar
17. Li, D., Marks, T. J., and Ratner, M. A., Chem. Phys. Lett. 131, 370 (1986).Google Scholar
18. Li, D., Marks, T. J., and Ratner, M. A., Mat. Res. Soc. Symp. Proc. 109, 149 (1988).Google Scholar
19. Li, D., Ratner, M. A., and Marks, T. J., J. Am. Chem. Soc. 110, 1707 (1988).Google Scholar
20. See also: Dirk, C. W., Twieg, R. J., and Wagniere, G., J. Am. Chem. Soc. 108, 5387 (1986).Google Scholar
21. Ward, J. F., Rev. Mod. Phys. 37, 1 (1965).CrossRefGoogle Scholar
22. Orr, B. J. and Ward, J. F., Mol. Phys. 20(3), 513 (1971).Google Scholar
23. Pople, J. A., Trans. Faraday Soc. 49, 1375 (1953).Google Scholar
24. Pariser, R. and Parr, R. G., J. Chem. Phys. 21, 466 (1953).Google Scholar
25. Linderberg, J. and Öhrn, Y., Propagators in Quantum Chemistry (Academic, London, 1972).Google Scholar
26. Pariser, R., J. Chem. Phys. 21, 568 (1953).CrossRefGoogle Scholar
27. Cohan, N. V., Coulson, C. A. and Jamieson, J. H., Trans. Faraday Soc. 53, 582 (1957).Google Scholar
28. Davis, D. L., Trans. Faraday Soc. 48, 789 (1952).CrossRefGoogle Scholar