Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-31T01:38:43.617Z Has data issue: false hasContentIssue false

Position Controlled GaN Nano-Structures Fabricated by Low Energy Focused Ion Beam System.

Published online by Cambridge University Press:  01 February 2011

Takahiro Nagata
Affiliation:
CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 560–0082, Japan.
Parhat Ahmet
Affiliation:
National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305–0047, Japan.
Takashi Koida
Affiliation:
NICP, ERATO, Japan Science and Technology Corporation (JST), Fujimi, Chiyoda 102–0071, Japan.
Shigefusa F. Chichibu
Affiliation:
Institute of Applied Physics and Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8573, Japan. NICP, ERATO, Japan Science and Technology Corporation (JST), Fujimi, Chiyoda 102–0071, Japan.
Toyohiro Chikyow
Affiliation:
CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 560–0082, Japan. National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305–0047, Japan.
Get access

Abstract

We have demonstrated position controlled GaN nano structures with a combination of surface treatments and nucleation sites control assisted by low energy focused ion beam. Ga ions in the range of 100 eV - 10 keV were irradiated onto the surface of the As-terminated Si (100) to create the nucleation sites. The deposited Ga atoms migrated on the surface and were trapped at the nucleation sites to form Ga droplets. Subsequently an excited atomic nitrogen source was supplied to the surface. By SEM observation, the GaN microcrystals of diameter about 800 nm were found to be allocated every 2 μm periodically on the substrates, and cathodoluminescence peaks from GaN nano structures were observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

RefereNCE

1. Nakamura, S. and Fasol, G., The Blue Laser Diode (Springer, Heidelberg, 1997).Google Scholar
2. Chikyow, T. and Koguchi, N., J. Vac. Sci. Technol. B 16, 2538 (1998).Google Scholar
3. Nikawa, K., J. Vac. Sci. Technol. B 9, 2566 (1991).Google Scholar
4. Wargner, A., Levin, J. P., Mauer, J. L., Blauner, P. G., Kirch, S. J., and Long, P., J. Vac. Sci. Technol. B 8, 1557 (1990).Google Scholar
5. Chikyow, T. and Koguchi, N., Appl. Phys. Lett. 40, 939 (1992).Google Scholar
6. Koguchi, N., and Ishige, K., Jpn. J. Appl. Phys. part 1 32, 2052 (1993).Google Scholar
7. Bringans, R. D. and Olmstead, M. A., J. Vac. Sci. Technol. B 7, 1232 (1989).Google Scholar
8. Biegelsen, D. K., Bringans, R. D., Northrup, J. E., Schabel, M. C., and Swartz, L. E., Phys. Rev. B 47, 9589 (1993).Google Scholar
9. Li, X. and Coleman, J., Appl. Phys. Lett. 70, 438 (1997).Google Scholar
10. Orton, J. W. and Foxon, C. T., Rep. Prog. Phys. 61, 1 (1998).Google Scholar
11. Salviati, G., Zanotti-Fregonara, C., Albretch, M. A., Christiansen, S., Strunk, H. P., Mayer, M., Pelzmann, A., Kamp, M., Ebeling, K. J., Bremser, M. D., Davis, R. F., and Shreter, Y. G., Inst. Phys. Conf. Ser. 157, 199 (1997).Google Scholar
12. Matsushita, D., Ikeda, H., Sakai, A., Zaima, S., and Yasuda, Y., Thin Solid Films 369, 293 (2000).Google Scholar
13. Morita, Y., Ishida, T., and Tokumoto, H., Jpn. J. Appl. Phys. 41, 2495 (2002).Google Scholar