Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-18T08:53:14.806Z Has data issue: false hasContentIssue false

Plasma Enhanced Chemical Vapor Deposition of Silicon Sulfide and Phosphorus Sulfide thin Films

Published online by Cambridge University Press:  21 February 2011

R.K. Shibao
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
V.I. Srdanov
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
M. Hay
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
H. Eckert
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
Get access

Abstract

Amorphous SiSx:H (x ∼ 2) films have been synthesized from H2S and SiH4 precursors using a remote plasma enhanced chemical vapor deposition apparatus. Structural studies by solid state nuclear magnetic resonance (NMR) and Raman scattering reveal that the atomic environments in these materials are similar to those observed in melt-quenched silicon sulfide glasses, and are characterized by corner- and edge-shared SiS4/2 tetrahedra. Compared to these glasses, however, the films show consistently higher fractions of corner-sharing S1S4/2 tetrahedra. The ratio of corner- to edge sharing tetrahedra and the Si:S ratio can be influenced by the H2S/S1H4 flow rate ratio during deposition. Thus, PECVD opens up wider opportunities for structural tailoring of amorphous silicon sulfide materials than currently possible by means of the melt-quenching method. Preliminary data for the PECVD synthesis of phosphorus sulfide is also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Taylor, P.C., Mater. Res. Soc. Bull., p.36 (1987).Google Scholar
2 Churbanov, M.F.J., J. Noncryst. Solids 140, 324 (1992).Google Scholar
3 Nishii, J., Morimoto, S., Inagawa, I., lizuka, R., Yamishita, T., Yamagashi, T., J. Noncryst. Solids 140, 199 (1992).Google Scholar
4 Pradel, A. and Ribes, M., Solid State Ionics 18/19, 351 (1986).Google Scholar
5 Kennedy, J.H., Zhang, Z., Eckert, H., J. Noncryst. Solids 123, 328 (1990).Google Scholar
6 Tenhover, M., Henderson., R.S. Hazle, M.A., Lukco, D., Grasselli, R.K., Design of New Materials, edited by Cocke, D. and Clearfield, A. (Plenum Publishing Corporation, 1987), p. 329.Google Scholar
7 Tenhover, M., Boyer, R.D., Henderson, R.S., Hammond, T.F., Schreve, G.A., Solid State Commun. 65, 1517 (1988).Google Scholar
8 Griffiths, J.E., Malyi, M., Espinosa, P., Remeika, J.P., Phys. Rev. B 30, 6978 (1984).Google Scholar
9 Sugai, S., Phys. Rev. B 35, 1345 (1987).Google Scholar
10 Moran, K., Shibao, R., Eckert, H., Hyperfine Interact. 62, 55 (1990).Google Scholar
11 Elliott, S.R., Nature 354, 445 (1991).Google Scholar
12 Cardinaud, C., Turban, G., Cros, B., Ribes, M., Thin Solid Films 205, 165 (1991).Google Scholar
13 For a general review of PECVD techniques, see Rossnagel, S.M.; Cuomo, J. J.; Westwood, W.D. Handbook of Plasma Processing Technologies (Noyes Publications, Park Ridge N. Y).Google Scholar
14 Lin, G.H., Kapur, M., He, M.Z., Bockris, J.O.M., J. Noncryst. Solids 127, 186 (1991).Google Scholar
15 Al- Dallal, S., Hammam, M., Al- Alawi, S.M., Aljishi, S., Breitschwerdt, A., Phil. Mag. B 63, 839 (1991).Google Scholar
16 Al- Dallal, S., Aljishi, S., Hammam, M., Al-Alawi, A.M., Stutzmann, M., Jin, S., Mushik, T., Schwarz, R., J. Appl. Phys. 70, 4926 (1991).Google Scholar
17 Al- Dallal, S., Hammam, M., Al- Alawi, S.M., J. Noncryst. Solids 114, 462, 789 (1989).Google Scholar
18 He, M.Z., Lin, G.H., Bockris, J.O.M., J. Noncryst. Solids 142, 108 (1992).Google Scholar
19 Koudelka, L., Pisarcik, M., Gutenev, M.S., Blinov, L.N., J. Mat. Sci. Lett. 8, 933 (1989).Google Scholar
20 Shibao, R.K., Srdanov, V.I., Hay, M., Eckert, H., Chem. Mat. 6, 306 (1994).Google Scholar