Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-10-31T23:44:07.099Z Has data issue: false hasContentIssue false

Optical Absorption of Large Band-Gap SbxBi1-xI3 Alloys

Published online by Cambridge University Press:  11 February 2011

C. Persson
Affiliation:
Condensed Matter Theory Group, Department of Physics, Uppsala University, Box 530, SE-75121 Uppsala, Sweden
R. Ahuja
Affiliation:
Condensed Matter Theory Group, Department of Physics, Uppsala University, Box 530, SE-75121 Uppsala, Sweden
J. Souza de Almeida
Affiliation:
Condensed Matter Theory Group, Department of Physics, Uppsala University, Box 530, SE-75121 Uppsala, Sweden
B. Johansson
Affiliation:
Condensed Matter Theory Group, Department of Physics, Uppsala University, Box 530, SE-75121 Uppsala, Sweden
C. Y. An
Affiliation:
Instituto Nacional de Pesquisas Espaciais, INPE/LAS - C.P.515, 12201–970 São José dos Campos, SP, Brazil
F.A. Ferreira
Affiliation:
Instituto Nacional de Pesquisas Espaciais, INPE/LAS - C.P.515, 12201–970 São José dos Campos, SP, Brazil
N. Souza Dantas
Affiliation:
Departamento de Ciências Exatas, Universidade Estadual de Feira de Santana, Br 116, Km 03, Campus Universitário, 44031–460 Feira de Santana, Ba, Brazil
I. Pepe
Affiliation:
Instituto de Física, Laboratório de Propriedades Ópticas, Universidade Federal da Bahia, Campus Universitário de Ondina, 40210–340 Salvador, Ba, Brazil
A. Ferreira da Silva
Affiliation:
Instituto de Física, Laboratório de Propriedades Ópticas, Universidade Federal da Bahia, Campus Universitário de Ondina, 40210–340 Salvador, Ba, Brazil
Get access

Abstract

The optical properties of SbBiI3 alloys have been investigated experimentally by absorption measurements and theoretically by a full-potential augmented plane wave (FPLAPW) method within the generalized gradient approximation. The fundamental band-gap energy of these alloys changes from BiI3- to SbI3-like with increasing percentage of Sb content. The calculated band-gap energies as well as the optical absorption were found to be in a very good qualitatively agreement with the experimental results. We present calculated density-of-states as well as the dielectric functions for evaluation of future experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ikari, T., Shigetomi, S., Koga, Y., Nishimura, N., Yayama, H. and Tomokiyo, A., Phys. Rev. B 37, 886 (1988)Google Scholar
2. Jellison, G. E. Jr, Ramey, J. O. and Boatner, L. A., Phys. Rev. B 59, 9718 (1999).Google Scholar
3. Ahuja, R., Arwin, H., Ferreira da Silva, A, Persson, C., Osório-Guillon, J. M., Souza de Almeida, J., Moyses Araújo, C., Veje, E., Veissid, N., An, C. Y., Pepe, I. and Johansson, B., J. Appl. Phys. 93, (2003).Google Scholar
4. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. and Luitz, J., WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria), 2001. ISBN 3–9501031–1–2.Google Scholar
5. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)Google Scholar
6. Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993).Google Scholar
7. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
8. Ahuja, R., Ferreira da Silva, A., Persson, C., Osorio-Guillen, J. M., Pepe, I., Jarrendahl, K., Lindquist, O. P. A., Edwards, N. V., Wahab, Q., and Johansson, B., J. Appl. Phys. 91, 2099 (2002).Google Scholar