Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-13T08:26:54.835Z Has data issue: false hasContentIssue false

Neutron Detectors Made From Chemically Vapour Deposited Semiconductors

Published online by Cambridge University Press:  10 February 2011

F. Foulon
Affiliation:
LETI (CEA - Technologies Avancées) DEIN/SPE - CEA/Saclay, 91191 Gif-sur-Yvette, France
P. Bergonzo
Affiliation:
LETI (CEA - Technologies Avancées) DEIN/SPE - CEA/Saclay, 91191 Gif-sur-Yvette, France
A. Brambilla
Affiliation:
LETI (CEA - Technologies Avancées) DEIN/SPE - CEA/Saclay, 91191 Gif-sur-Yvette, France
C. Jany
Affiliation:
LETI (CEA - Technologies Avancées) DEIN/SPE - CEA/Saclay, 91191 Gif-sur-Yvette, France
B. Guizard
Affiliation:
LETI (CEA - Technologies Avancées) DEIN/SPE - CEA/Saclay, 91191 Gif-sur-Yvette, France
R. D Marshall
Affiliation:
LETI (CEA - Technologies Avancées) DEIN/SPE - CEA/Saclay, 91191 Gif-sur-Yvette, France
Get access

Abstract

In this paper, we present the results of investigations on the use of semiconductors deposited by chemical vapour deposition (CVD) for the fabrication of neutron detectors. For this purpose, 20 μm thick hydrogenated amorphous silicon (a-Si:H) pin diodes and 100 μm thick polycrystalline diamond resistive detectors were fabricated. The detectors were coupled to a neutron-charged particle converter : a layer of either gadolinium or boron (isotope 10 enriched) deposited by evaporation. We have demonstrated the capability of such neutron detectors to operate at neutron fluxes ranging from 101 to 106 neutrons/cm2.s. The fabrication of large area detectors for neutron counting or cartography through the use of multichannel reading circuits is discussed. The advantages of these detectors include the ability to produce large area detectors at low cost, radiation hardness (∼ 4 Mrad for a-Si:H and ∼ 100 Mrad for diamond), and for diamond, operation at temperatures up to 500°C. These properties enable the use of these devices for neutron detection in harsh environments. Thermal neutron detection efficiency up to 22 % and 3 % are expected by coupling a-Si:H diodes and diamond detectors to 3 μm thick gadolinium (isotope 157) and 2 μm thick boron layers, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Perez-Mendez, V., Morel, J., Kaplan, S.N., Street, R.A., Nucl. Instr. Meth. A252, 478 (1987).Google Scholar
2. Hong, W.S. et al., IEEE Trans. Nucl. Sci. 42, 240 (1995).Google Scholar
3. Pochet, T., Ilie, A., Brambilla, A., Equer, B., IEEE Trans. Nucl. Sci. 43, 1452 (1996).Google Scholar
4. Mireshghi, A., Cho, G., Drewery, J., Jing, T., Kaplan, S.N., Perez-Mendez, V., Wildermuth, D., IEEE Trans. Nucl. Sci. 39, 635 (1992).Google Scholar
5. Mireshghi, A., Cho, G., Drewery, J., Jing, T., Lee, H., Kaplan, S.N., Perez-Mendez, V., IEEE Trans. Nucl. Sci. 41, 915 (1994).Google Scholar
6. Street, R., Wu, X.D., Weisfield, R., Ready, S., Apte, R., Nguyen, M., Nylen, P., Nucl. Instr. Meth. A380, 450 (1996).Google Scholar
7. Kania, D.R., Landstrass, M.I., Plano, M.A., Diamond. Relat. Mater. 2, 374 (1993).Google Scholar
8. Foulon, F., Pochet, T., Gheeraert, E., Deneuville, A., IEEE Trans. Nucl. Sci. 41, 927 (1994).Google Scholar
9. Meier, D. et al., submitted to J. Electrochem. Soc. and presented at the 5th International Symposium on Diamond Materials, Paris, September 1997.Google Scholar
10. MacKeag, R.D., Marshall, R.D., Bhaswar, B., Chan, S.S.M., Jackman, R.B., Diamond. Relat. Mater. 6, 374 (1996).Google Scholar
11. Brambilla, A., Bergonzo, P., Foulon, F., Jany, C., Pochet, T., Nucl. Instr. Meth. A380, 446 (1996).Google Scholar
12. Brambilla, A., Bergonzo, P., Foulon, F., Jany, C., Guizard, B., Pochet, T., presented at the International Conference on Radiation Dosimetry and Safety, Taipei, March 1997.Google Scholar
13. Rose, A., Nucl. Instr. Meth. 52, 166 (1967).Google Scholar
14. Feigl, B., Rauch, H., Nucl. Instr. Meth. 61, 349 (1968).Google Scholar
15. Jany, C., Bergonzo, P., Foulon, F., Tardieu, A., Gicquel, A., submitted to J. Electrochem. Soc. and presented at the 5th International Symposium on Diamond Materials, Paris, September 1997.Google Scholar
16. Jany, C., Foulon, F., Bergonzo, P., Marshall, R.D., submitted to Diamond. Relat. Mater. And presented at Diamond 97, Edinburgh, August 1997.Google Scholar
17. Colledani, C. et al., to be published in Nucl. Instr. Meth.Google Scholar