Hostname: page-component-788cddb947-wgjn4 Total loading time: 0 Render date: 2024-10-07T11:38:43.873Z Has data issue: false hasContentIssue false

The influence of Ti and TiN on the thermal stability of CoSi2.

Published online by Cambridge University Press:  21 March 2011

C. Detavernier
Affiliation:
Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, B-9000, Gent, Belgium
Guo-Ping Ru
Affiliation:
Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
R.L. Van Meirhaeghe
Affiliation:
Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, B-9000, Gent, Belgium
K. Maex
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium. also at E.E. Dept, K.U. Leuven, B-3001 Leuven, Belgium
Get access

Abstract

In this work, AFM and sheet resistance measurements are used to characterize the thermal stability of thin CoSi2 films. We were particularly interested in the influence of different multilayer structures on the topography and surface roughness. Four different multilayer structures (Co/Si, TiN/Co/Si, Ti/Co/Si and Co/Ti/Si) were investigated. Thermal degradation of CoSi2 formed from a standard Co/Si structure is found to have an activation energy of about 4.2 eV, independent of layer thickness (in agreement with previous results by Alberti et al.). A TiN capping layer is shown to improve the thermal stability. However, if the TiN layer is too thick (e.g. 50 nm), a new failure mode is observed: although the TiN prevents grain boundary grooving of the silicide, the thermal stress induced by the TiN causes the CoSi2 layer to crack. For a Ti capping layer, a strong increase of the thermal stability of the CoSi2 layer is observed, even if the Ti capping layer is removed by a selective etching step after the first RTP annealing. The presence of a very thin Ti-O-N containing layer on the CoSi2surface seems to strongly decrease surface diffusion and in this way reduce the tendency for grain boundary grooving.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Xiao, Z.G., Rozgonyi, G.A., Canovai, C.A., Osburn, C.M., MRS Proc. 202, 101 (1991).Google Scholar
2. Wang, Q.F., Osburn, C.M., Smith, P.L., Canovai, C.A., McGuire, G.E., J. Electrochem. Soc. 140, 200 (1993).Google Scholar
3. Hsia, S.L., Tan, T.Y., Smith, P., McGuire, G.E., J. Appl. Phys. 72,1864 (1992).Google Scholar
4. Chen, W.M., Banerjee, S.K., Lee, J.C., Appl. Phys. Lett. 64, 1505 (1994).Google Scholar
5. Via, F. La, Alberti, A., Raineri, V., Ravesi, S., Rimini, E., J. Vac. Sc. Techn. B 16, 1129 (1998).Google Scholar
6. Alberti, A., Via, F. La, Rimini, F., J. Vac. Sc. Techn. B 17, 1448 (1999).Google Scholar
7. Chapman, R.C., Smith, P., Adu, R.P., McGuire, G.E., Canovai, C., Osburn, C., J. Vac. Sc. Techn. B 10, 1329 (1992).Google Scholar
8. Hedge, R.I., Tobin, P.J., Surf. Sc. 261, 1 (1992).Google Scholar
9. Lahnor, P., Seiter, K., Schulz, M., Dorsch, W., Scholz, R., Appl. Phys. A 61, 369 (1995).Google Scholar
10. Nolan, T.P., Sinclair, R., Beyers, R., J. Appl. Phys. 71, 720 (1992).Google Scholar
11. Jiang, H., Osburn, C.M., Xiao, Z.G., McGuire, G., Rozgonyi, G.A., J. Electrochem. Soc. 139, 211 (1992).Google Scholar
12. Dass, M.L.A., Fraser, D.B., Wei, C.S., Appl. Phys. Lett. 58, 1308 (1991).Google Scholar
13. Mullins, W.W., J. Appl. Phys. 28, 333 (1957).Google Scholar
14. Ogawa, S., Yoshida, T., Kouzaki, T., Appl. Phys. Lett. 56, 725 (1990).Google Scholar
15. Sun, W.T., Lee, H.M., Liaw, M.C., Hsu, C.C.H., Jpn. J. Appl. Phys. 37, 5854 (1998).Google Scholar
16. Tung, R.T., Schrey, F., Appl. Phys. Lett. 67, 2164 (1995).Google Scholar
17. Sohn, D.K., Park, J.S., Lee, B.H., Bae, J.U., Byun, J.S., Kim, J.J., Appl. Phys. Lett. 73, 2302 (1998).Google Scholar