Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T16:24:28.039Z Has data issue: false hasContentIssue false

Immortal InterConnects—Prevent Cracking and Limit Void Size

Published online by Cambridge University Press:  10 February 2011

Z. Suo
Affiliation:
Mechanical and Aerospace Engineering Department and Princeton Materials Institute, Princeton University, Princeton, NJ 08544
Q. Ma
Affiliation:
Intel Corporation, Components Research. 2200 Mission College Blvd., Santa Clara, 95052
W. K. Meyer
Affiliation:
Intel Corporation, Components Research. 2200 Mission College Blvd., Santa Clara, 95052
Get access

Abstract

This paper considers an aluminum line in a multilevel interconnect structure. Upon cooling from the processing temperature, differential thermal contraction causes a triaxial tensile stress state in the aluminum line; voids may initiate and grow to relax the stress. When a direct voltage is applied, the electric current causes aluminum atoms to diffuse. The interconnect will evolve to a state with a high pressure at the anode, and a large void at the cathode. The pressure may crack the surrounding insulator or debond an interface, extruding aluminum. The void may uncover the via contact area, substantially increasing electrical resistance. Provided neither failure mode occurs, aluminum electromigration will stop and the interconnect will function forever. This paper examines the conditions under which the interconnect is immortal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jones, R.E.. and Basehore, M.L., Appl. Phys. Lett. 50, 725 (1987).Google Scholar
2. Greenebaum, B., Sauter, A.I., Flinn, P.A.. and Nix, W.D., Appl. Phys. Lett. 66 1845 (1991).Google Scholar
3. Shen, Y.-L, Suresh, S., Blech, I.A., J. Appl. Phys. 66 1388 (1996).Google Scholar
4. Ma, Q., Chiras, S., Clarke, D.R.. and Suo, Z., J. Appl. Phys. 66 1614 (1995).Google Scholar
5. Yue, J.T., Funsten, W.P.. and Taylor, R.V., Proc. Int. Reliability Phys. p. 126 (1985).Google Scholar
6. Lytle, S.A. and Oates, A.S., J. Appl. Phys. 71, 174 (1992).Google Scholar
7. Arzt, E., Kraft, O., Nix, W.D. and Sanchez, J.E., Jr. J. Appl. Phys. 76, 1563 (1994).Google Scholar
8. Marieb, T., Flinn, P., Bravman, J.C., Gardner, D.. and Madden, M., J. Appl. Phys. 78, 1026 (1995).Google Scholar
9. Hu, C.-K., Small, M.B.. and Ho, P.S., J. Appl. Phys. 74, 969 (1993).Google Scholar
10. Filippi, R.G., Biery, G.A.. and Wachnik, R.A., J. Appl. Phys. 78, 3756 (1995).Google Scholar
11. Filippi, R.G., Wachnik, R.A., Aochi, H., Lloyd, J.R., Korhonen, M.A., Appl. Phys. Lett., 69 2350 (1996).Google Scholar
12. Blech, I.A., J. Appl. Phys. 47, 1203 (1976).Google Scholar
13. Suo, Z., Acta Materialia. 46, 3725 (1998).Google Scholar
14. Korhonen, M.A., Borgesen, P., Tu, K.N., Li, C.-Y., J. Appl. Phys. 73, 3790 (1993).Google Scholar