Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-18T05:46:52.557Z Has data issue: false hasContentIssue false

Hydrogen in GaN-Experiments

Published online by Cambridge University Press:  10 February 2011

S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
J. W. LEE
Affiliation:
Plasma-Therm, Inc., St. Petersburg, FL 33716
R. G. Wilson
Affiliation:
Consultant, Stevenson Ranch, CA 91381
J. M. Zavada
Affiliation:
Army Research Office, Research Triangle Park, NC 27709
M. G. Weinstein
Affiliation:
Department of Physics, Lehigh University, Bethlehem, PA 18015
C. Y. Song
Affiliation:
Department of Physics, Lehigh University, Bethlehem, PA 18015
M. Stavola
Affiliation:
Department of Physics, Lehigh University, Bethlehem, PA 18015
Get access

Abstract

Hydrogen is an important component of the gas phase growth chemistry for GaN (eg. NH3, (CH 3)3 Ga)and the processing environment for subsequent device fabrication (eg. SiH4 for dielectric deposition, NH3 or H2 annealing ambients), and is found to readily permeate into heteroepitaxial material at temperatures ≤200°C. Its main effect has been the passivation of Mg acceptors in p-GaN through formation of neutral Mg-H complexes, which can be dissociated through minority-carrier (electron) injection or simple thermal annealing. Atomic hydrogen is also found to passivate a variety of other species in GaN, as detected by a change in the electrical or optical properties of the material. An example is the increase in luminescence efficiency of Er3+ ions in AIN after hydrogenation, through passivation of non-radiative states that would be an alternative path for de-excitation. The injection of hydrogen during a large variety of device fabrication steps has been detected by SIMS profiling using 2H isotopic labeling. Basically all of the acceptor species in GaN, namely Mg, C, Ca and Cd are found to form complexes with hydrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Iwasa, N., Senoh, M. and Muaki, T., Jap. J. Appl. Phys. 31, 1258 (1992).Google Scholar
2. Amano, H., Kito, M., Hiramatsu, K. and Akasaki, I., Jap. J. Appl. Phys. 28, L2112 (1989).Google Scholar
3. Gotz, W., Johnson, N. M., Bour, D. P., McCluskey, M. D. and Haller, E. E., Appl. Phys. Lett. 69, 3725 (1996); W. Gotz, M. D. McCluskey, N. M. Johnson and D. P. Bour, Mat. Res. Soc. Symp. Proc. 468, 117 (1997).Google Scholar
4. Li, Y., Lu, Y., Shen, H., Wraback, M., Hwang, C.-Y., Schurmann, M., Mayo, W., Salagaj, T. and Stall, R. A., Mat. Res. Soc. Symp. Proc. 395, 369 (1996).Google Scholar
5. Li, X. and Coleman, J. J., Appl. Phys. Lett. 69, 1605 (1996).Google Scholar
6. Pearton, S. J., Lee, J. W. and Yuan, C., Appl. Phys. Lett. 68, 2690 (1996).Google Scholar
7. Neugebauer, J. and Walle, C. G. Van de, Phys. Rev. Lett. 75, 4452 (1995); Mat. Res. Soc. Symp. Proc. 423, 619 (1996); Mat. Res. Soc. Symp. Proc. 378, 503 (1995).Google Scholar
8. Neugebauer, J. and Walle, C. G. Van de, Appl. Phys. Lett. 68, 1829 (1996).Google Scholar
9. Estreicher, S. K. and Maric, D. M., Mat. Res. Soc. Symp. Proc. 423, 613 (1996).Google Scholar
10. Brandt, M. S., Ager, J. W., Gotz, W., Johnson, N. M., Harris, J. S., Molson, R. J. and Moustakas, T. D., Phys. Rev. B49, 1478 (1994).Google Scholar
11. Neugebauer, J. and Walle, C. G.Van de, Phys. Rev. B50, 8069 (1994).Google Scholar
12. Pearton, S. J., in GaN and Related materials (Gordon and Breach, NY 1997).Google Scholar
13. Nakamura, S., Mukai, T., Senoh, M. and Iwasa, N., Jap. J. Appl. Phys. 31, L139 (1992).Google Scholar
14. Ohba, Y. and Hatano, A., Jap. J. Appl. Phys. 33, L1367 (1994).Google Scholar
15. Wilson, R. G., Pearton, S. J., Abernathy, C. R. and Zavada, J. M., J. Vac. Sci. Technol. A13, 719 (1995).Google Scholar
16. Pearton, S. J., Shul, R. J., Wilson, R. G., Ren, F., Zavada, J. M., Abernathy, C. R., Vartuli, C., Lee, J., MacKenzie, J. and Mileham, J. R., J. Electron. Mater. 25, 845 (1996).Google Scholar
17. Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Lee, J. W., MacKenzie, J. D., Wilson, R. G., Shul, R. J., Ren, F. and Zavada, J. M., J. Vac. Sci. Technol. A14, 831 (1996).Google Scholar
18. Johnson, M. A. L., Yu, Z., Boney, C., Hughes, W. C., Cook, J. W., Schetzina, J. F., Zhao, H., Skromme, B. J. and Edmond, J. A., Mat. Res. Soc. Symp. Proc. 449, 215 (1997).Google Scholar
19. Polyakov, A. Y., Shin, M., Pearton, S. J., Skowronski, M., Greve, D. W. and Freitas, J. A., mat. Res. Soc. Symp. Proc. 423, 607 (1996).Google Scholar
20. Sato, M., Appl. Phys. Lett. 68, 935 (1996).Google Scholar
21. Binari, S. C., Dietrich, H. B., Kelner, G., Rowland, L. B., Doverspike, K. and Wickenden, D. K., J. Appl. Phys. 78, 3008 (1995).Google Scholar
22. Brandt, M. S., Johnson, N. M., Molnar, R. J., Singh, R. and Moustakas, T. D., Appl. Phys. Lett. 64, 2264 (1994).Google Scholar
23. Johnson, N. M., Gotz, W., Neugebauer, J. and Walle, C. G. Van de, Mat. Res. Soc. Symp. Proc. 395, 723 (1996).Google Scholar
24. Yuan, C., Salagaj, T., Gurary, A., Zawadzki, P., Chen, C. S., Kroll, W., Stall, R. A., Li, H., Schurmann, M., Hwang, C. Y., Mayo, W. E., Lu, Y., Pearton, S. J., Krishnankutty, S. and Kolbas, R. M., J. Electrochem. Soc. 142, L163 (1995).Google Scholar
25. Kim, W., Botchkarev, A. E., Salvador, A., Popovici, G., Tang, H. and Morkoc, H., J. Appl. Phys. (in press).Google Scholar
26. Kim, W., Salvador, A., Botchkarev, A. E., Aktas, O., Mohammad, S. N. and Morkoc, H., Appl. Phys. Lett. 69, 559 (1996).Google Scholar
27. Amano, H., Akasaki, I., Kozawa, T., Sawaki, N., Ikeda, K. and Ishii, Y., J. Lumin 4, 121 (1988).Google Scholar
28. Pearton, S. J., Abernathy, C. R. and Ren, F., Electron Lett. 30, 527 (1994).Google Scholar
29. Lee, J. W., Pearton, S. J., Zolper, J. C. and Stall, R. A., Appl. Phys. Lett. 68, 2102 (1996).Google Scholar
30. Burchard, A., Deicher, M., Forkel-Wirth, D., Hailer, E. E., Magerle, R., Prospero, A. and Stotzler, R., Mat. Res. Soc. Symp. 449, 961 (1997).Google Scholar
31. Van Vechten, J. A., Zook, J. D., Hornung, R. D. and Goldenberg, B., Jap. J. Appl. Phys. 31, 362 (1992).Google Scholar
32. see, for example, Neumark, G. F., Mat. Sci. Eng. R21, 1 (1997).Google Scholar
33. See, for example, Pearton, S. J., Corbett, J. W. and Stavola, M., Hydrogen in Crystalline Semiconductors (Springer-Verlag, Berlin 1992); J. I. Pankove and N.M. Johnson, Hydrogen in Semiconductors, Vol.34 Semiconductors and Semimetals (Academic Press, San Diego 1997).Google Scholar
34. Wilson, R. G., in Processing of Wide Bandgap Semiconductors, ed. Pearton, S. J. (Noyes Publications, Park Ridge, NY 1998).Google Scholar
35. Antell, G. R., Briggs, A. T. R., Butler, B. R., Kitching, S. A., Stagg, J. P., Chew, A. and Sykes, D. E., Appl. Phys. Lett. 53, 758 (1998).Google Scholar
36. Pearton, S. J., Bendi, S., Jones, K. S., Krishnamoorthy, V., Wilson, R. G., Ren, F., Karlicek, R. F. and Stall, R. A., Appl. Phys. Lett. 69, 1879 (1996).Google Scholar
37. Bosin, A., Fiorentini, V. and Vanderbilt, D., Mat. Res. Soc. Symp. Proc. 395, 503 (1996).Google Scholar
38. Torres, V. J. B., Oberg, S. and Jones, R., MRS Internat. J. Nitride Semicond. Res. 2, 35 (1997).Google Scholar
39. Zavada, J. M., Wilson, R. G., Abernathy, C. R. and Pearton, S. J., Appl. Phys. Lett. 64, 724 (1994).Google Scholar
40. Pearton, S. J., Abernathy, C. R., MacKenzie, J. D., Hommerich, V., Wu, X., Wilson, R. G.,Schwartz, R. N., Zavada, J. M. and Ren, F., Appl. Phys. Lett. 71, 1807 (1997).Google Scholar
41. Weinsten, M. G., Song, C. Y., Stavola, M., Pearton, S. J., Wilson, R. G., Shul, R. J., Killeen, K. P. and Ludowise, M. J., Appl. Phys. Lett. (in press).Google Scholar
42. Van de Walle, C.G., Phys. Rev. B56, R10020 (1997).Google Scholar