Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-08T07:51:56.599Z Has data issue: false hasContentIssue false

Hot deformation behavior of low carbon advanced high strength steel (AHSS) microalloyed with boron

Published online by Cambridge University Press:  01 February 2011

I. Mejía
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U”, Ciudad Universitaria, 58066–Morelia, Michoacán, México.
S. González-Sala
Affiliation:
Departament de Ciència dels Materials i Enginyeria Metal·lúrgica, ETSEIB-Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028–Barcelona, Spain.
J.M. Cabrera
Affiliation:
Departament de Ciència dels Materials i Enginyeria Metal·lúrgica, ETSEIB-Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028–Barcelona, Spain. CTM Centre Tecnològic, Av. de las Bases de Manresa, 1, 08240–Manresa, Spain.
Get access

Abstract

This research work deals the influence of boron content on the high temperature deformation behavior of a low carbon advanced high strength steel (AHSS). For this purpose high temperature tensile and compression tests are carried out at different temperatures and constant true strain rates by using an Instron testing machine equipped with a radiant cylindrical furnace. Tensile tests are carried out at different temperatures (650, 750, 800, 900 and 1000°C) at a constant true strain rate of 0.001 s-1. Uniaxial hot compression tests are also performed over a wide range of temperatures (950, 1000, 1050 and 1100°C) and constant true strain rates (10-3, 10-2 and 10-1 s-1). In general, experimental results of hot tensile tests show an improvement of the hot ductility of the AHSS microalloyed with boron, although poor ductility at low temperatures (650 and 750°C). The fracture surfaces of the AHSS tested at temperatures showing the higher ductility (800, 900 and 1000°C) indicate that the fracture mode is a result of ductile failure, whereas in the region of poor ductility the fracture mode is of the ductile-brittle type failure. On the other hand, experimental results of hot compression tests show that both peak stress and peak strain tend to decrease in the AHSS microalloyed with boron, which indicates that boron generates a sort of solid solution softening effect in similar a way to other interstitial alloying elements in steel. Likewise, hot flow curves of the AHSS microalloyed with boron show an acceleration of the onset of dynamic recrystallization (DRX) and a delay of the recrystallization kinetics. Results are discussed in terms of boron segregation towards austenitic grain boundaries and second phase particles precipitation during plastic deformation and cooling.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Committee on Automotive Applications, International Iron & Steel Institute, Advanced High Strength Steel Application Guidelines, 19 (2006).Google Scholar
2. Duensing, L. Modern Metals 62, 92 (2006).Google Scholar
3. Misra, R.D.K., Weatherly, G.C., Hartmann, J.E. and Boucek, A.J., Mater Sci. Technol. 17, 1119 (2001).Google Scholar
4. Thelning, K.E., Steel and its Heat Treatment, (Butterworths, London, 1984).Google Scholar
5. Leslie, W.C., The Physical Metallurgy of Steels, (McGraw-Hill, USA, 1981).Google Scholar
6. Kapadia, B.M., in Hardenability Concepts with Application to Steel, edited by Doane, D.V. and Kirkaldy, J.S., (The Metallurgical Society of the AIME, Warrendale, PA., USA, 1978) pp. 448480.Google Scholar
7. Mortimer, D.A. and Nicholas, M.G., Met. Sci. 10, 326 (1976).Google Scholar
8. Morral, J.E. and Cameron, J.B., Met. Trans. A 8, 1817 (1977).Google Scholar
9. Maitrepierre, Ph., Thivellier, D. Roves-Vernis, J., Rousseau, D. and Tricot, R. in Hardenability Concepts with Application to Steel, edited by Doane, D.V. and Kirkaldy, J.S., (The Metallurgical Society of the AIME, Warrendale, PA, USA, 1978) pp. 421447.Google Scholar
10. Sharma, R.C. and Purdy, G.R., Met. Trans. 5, 939 (1974).Google Scholar
11. Comineli, O., Abushosha, R. and Mintz, B. Mater Sci. Technol. 15, 1058 (1999).Google Scholar
12. Mintz, B., Mohamed, Z. and Abushosha, R. Mater Sci. Technol. 5, 682 (1989).Google Scholar
13. Suzuki, K., Miyagawa, S., Saito, Y. and Shiotani, K. ISIJ Int. 35, (34 1995).Google Scholar
14. Kim, S.K., Kim, J.S. and Kim, N.J., Metall. Mater. Trans. A 33, 701 (2002).Google Scholar
15. Morral, J.E. and Cameron, J.B., in Boron Hardenability Mechanisms, Boron in Steels, edited by Banerji, S.K. and Morral, J.E., (Proc. of the Metallurgical Society of AIME, Milwaukee, Wisconsin, USA, 1979) pp. 19.Google Scholar
16. Hondros, E.D. and Seah, M.P., Int. Met. Rev. 22, 262 (1977).Google Scholar
17. Luo, H.–W., Zhao, P., Zhang, Y. and Dang, Z.–J. Mater. Sci. Technol. 17, 843 (2001).Google Scholar
18. Tarboton, J.N., Matthews, L.M., Sutcliffe, A., Frost, C.M.P. and Wessels, J.P., Mater. Sci. Forum 318–3, 777 (1999).Google Scholar
19. Mintz, B. and Abushosha, R. Mater. Sci. Technol. 8, 171 (1992).Google Scholar
20. Lopéz-Chipres, E., Mejía, I., Maldonado, C., Bedolla-Jacuinde, A. and Cabrera, J.M., Mater. Sci. Eng. A 460–461, 464 (2007).Google Scholar
21. López-Chipres, E., Mejía, I., Maldonado, C., Bedolla-Jacuinde, A., El-Wahabi, M. and Cabrera, J.M., Mater. Sci. Eng. A 480, 49 (2008).Google Scholar
22. Mejía, I., López-Chipres, E., Maldonado, C., Bedolla-Jacuinde, A. and Cabrera, J.M., Int. J. Mat. Res. (formerly Z. Metallkd.) 99, 12 (2008).Google Scholar
23. Sakai, T. and Jonas, J.J., Acta Metall. 32, 189 (1984).Google Scholar
24. Zarandi, F. and Yue, S., ISIJ Int. 46, 591 (2006).Google Scholar
25. Lagerquist, M. and Langenborg, R. Scand. J. Metall. 1, 81 (1972).Google Scholar
26. Mintz, B., Yue, S. and Jonas, J.J, Int. Mater. Rev. 36, 187 (1991).Google Scholar
27. Nachtrab, W.T. and Chou, Y.T., J. Mater. Sci. 19, 2136 (1984).Google Scholar
28. Maehara, Y., Yasumoto, K., Tomono, H., Nagamichi, T. and Ohmori, Y. Mater. Sci. Technol. 6, 793 (1990).Google Scholar
29. Nachtrab, W.T. and Chou, Y.T., Metall. Trans. A 17, 1995 (1986).Google Scholar
30. Nachtrab, W.T. and Chou, Y.T., Metall. Trans. A 19, 1305 (1988).Google Scholar
31. Abushosha, R., Vipond, R. and Mintz, B. Mater. Sci. Technol. 7, 1101 (1991).Google Scholar
32. Matsuoka, H., Osawa, K., Ono, M. and Ohmura, M. ISIJ Int. 37, 255 (1997).Google Scholar
33. Nagasaki, C. and Kihara, J. ISIJ Int. 37, 523 (1997).Google Scholar
34. Song, S.–H., Guo, A.–M., Shen, D.–D., Yuan, Z.–X., Jiu, J. and Xu, T.–D. Mater. Sci. Eng. A 360, 96 (2003).Google Scholar
35. Mintz, B. ISIJ Int. 39, 833 (1999).Google Scholar
36. Mintz, B., Abushosha, R. and Crowther, D. N., Mat. Sci. Technol. 11, 474 (1995).Google Scholar
37. Xu, T.–D., Song, S.–H., Yuan, Z.–X. and Yu, Z.–S. J. Mater. Sci. 25, 1739 (1990).Google Scholar
38. Song, S.–H., Xu, T.–D., Yuan, Z.–X. and Yu, Z.–S. Acta Metall. Mater. 39, 909 (1991).Google Scholar
39. Xu, T.–D., Song, S.–H., Shi, H.–Z. Yuan, Z.–X and Gust, W. Acta Metall. Mater. 39, 3119 (1991).Google Scholar
40. He, X.L., Chu, Y.Y. and Jonas, J.J., Acta Metall. Mater. 37, 147 (1989).Google Scholar
41. Cao, B., Wang, X.–W., Cui, H.–Y and He, X.L., J. Univ. Sci. Technol., B9, 347 (2002).Google Scholar
42. Zhang, Z.L., Lin, Q.–Y. and Yu, Z.–S. Mater. Sci. Technol. 16, 305 (2000).Google Scholar
43. Seah, M.P., Acta Metall. Mater. 28, 955 (1980).Google Scholar
44. Humphreys, F.J. and Hatherly, M. Recrystallization and Related Annealing Phenomena, (Pergamon Press, Oxford, 1995).Google Scholar
45. He, X.L., Djahazi, M., Jonas, J.J. and Jackman, J. Acta Metall. Mater. 39, 2295 (1991).Google Scholar
46. Djahazi, M., He, X.L., Jonas, J.J. and Collins, L. in Recrystallization '90, edited by Chandra, T. (TMS-AIME, 1990) pp. 681.Google Scholar
47. Djahazi, M., He, X.L. and Jonas, J.J., in Proc. Int. Conf. on Phys. Metall. of Thermomechanical Processing of Steels and Other Metals, edited by Tamura, I. (Thermec-88 (1), Tokyo, Japan, 1988) pp. 246.Google Scholar
48. Djahazi, M., He, X.L., Jonas, J.J. and Ruddle, G.E., in Proceedings of the International Symposium on Processing, Microstructure and Properties of HSLA Steels, edited by Deardo, A.J., (TMS-AIME, Warrendale, PA, 1988) pp. 69.Google Scholar
49. Sakai, T., Xu, Z. and Zhang, G.R., Tetsu-to-Hagané 80, 557 (1994).Google Scholar
50. Xu, Z., Zhang, G.R. and Sakai, T. ISIJ Int. 35, 210 (1995).Google Scholar
51. Escobar, F., Cabrera, J.M. and Prado, J.M., Mater. Sci. Technol. 19, 1137 (2003).Google Scholar
52. Schulson, E.M., Weihs, T.P., Viens, D.V. and Baker, I. Acta Metall. Mater. 33, 1587 (1985).Google Scholar