Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-08T12:48:14.765Z Has data issue: false hasContentIssue false

High-density liquid-like component facilitates plastic flow in a model amorphous silicon system

Published online by Cambridge University Press:  01 February 2011

Michael J. Demkowicz
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
Ali S. Argon
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
Get access

Abstract

Molecular dynamics simulations show that plastic deformation behavior of model Stillinger-Weber amorphous Si is very sensitive to the density of the initial unstressed state. Low-density systems exhibit a pronounced yield phenomenon, strain softening, and a dramatic drop in pressure during deformation at constant volume. This behavior is explained by the interplay in every system of the prevailing solid-like and liquid-like components, with the latter being denser and more amenable to plastic flow.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERNCES

[1] Veprek, S., J. Vac. Sci. Technol. A 17, 2401 (1999).Google Scholar
[2] Argon, A. S. and Veprek, S., MRS Proceedings Vol. 697, Boston, P1.2, (2001), edited by Meng, W. J. MRS, Warrendale, PA, (2002).Google Scholar
[3] Keblinski, P., Phillpot, S. R., Wolf, D., Gleiter, H., Acta. Mater. 45, 987 (1997).Google Scholar
[4] Laaziri, K. et al., Phys. Rev. Lett. 82, 3460 (1999).Google Scholar
[5] Witvrouw, A. and Spaepen, F., J. Appl. Phys. 74, 7154 (1993).Google Scholar
[6] Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
[7] Kluge, M. D. and Ray, J. R., Phys. Rev. B 37, 4132 (1988).Google Scholar
[8] Luedtke, W. D. and Landman, U., Phys. Rev. B 40, 1164 (1989).Google Scholar
[9] Deng, D., Argon, A. S., and Yip, S., Phil. Trans. R. Soc. Lond. A 329, 549 (1989); 329, 575 (1989); 329, 595 (1989); 329, 613 (1989).Google Scholar
[10] Bulatov, V. V. and Argon, A. S., Modelling Simul. Mater. Sci. 2, 167 (1994); 2, 185 (1994); 2, 203 (1994).Google Scholar
[11] Mott, P. H., Argon, A. S., and Suter, U. W., Phil. Mag. A 67, 931 (1993).Google Scholar
[12] Thorpe, M. F. et al., J. Non-cryst. Sol. 266–269, 859 (2000).Google Scholar
[13] Bazant, M. Z., Kaxiras, E., and Justo, J. F., Phys. Rev. B 56, 8542 (1997).Google Scholar
[14] Keblinski, P., Bazant, M. Z., Dash, R. K., Treacy, M. M., Phys. Rev. B 66, 064104–1 (2002).Google Scholar
[15] Angell, C. A., Borick, S., and Grabow, M., J. Non-cryst. Sol. 205–207, 463 (1996).Google Scholar
[16] Turnbull, D. and Cohen, M. H., J. Chem. Phys. 34, 120 (1961).Google Scholar
[17] Barkema, G. T. and Mousseau, Normand, Phys. Rev. Lett. 77, 4358 (1996).Google Scholar
[18] Jiang, X. et al., J. Appl. Phys. 67, 6772 (1990).Google Scholar
[19] Mott, P. H., Argon, A. S., and Suter, U. W., J. Comput. Phys. 101, 140 (1992).Google Scholar
[20] McClintock, F. A. and Argon, A. S., Mechanical Behavior of Materials (Addison-Wesley, Reading, MA, 1966), pp. 7291 and pp. 273–298Google Scholar
[21] Broughton, J. Q. and Li, X. P., Phys. Rev. B 35, 9120 (1987).Google Scholar
[22] Zallen, R., in Fluctuation Phenomena, edited by Montroll, E. W. (North-Holland, New York, 1979), pp. 177228 Google Scholar
[23] Cohen, M. H. and Grest, G. S., Phys. Rev. B 20, 1077 (1979).Google Scholar
[24] Alexander, H. and Haasen, P., in Solid State Physics, edited by Seitz, F. (Academic, New York, 1968), Vol. 22., pp. 27158 Google Scholar