Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T14:29:34.891Z Has data issue: false hasContentIssue false

Focused Ion Beam Fabrication of Individual Carbon Nanotube Devices

Published online by Cambridge University Press:  01 February 2011

Lee Chow
Affiliation:
chow@ucf.edu, University of Central Florida, Physics, 4000 Central Florida Blvd., Orlando, FL, 32816-2385, United States, 407-823-2333, 407-823-5112
Guangyu Chai
Affiliation:
Guangyuchai@gmail.com, Apollo Technologies Inc., Orlando, FL, 32750, United States
Get access

Abstract

Focused ion beam (FIB) techniques have found many applications in nanoscience and nanotechnology applications in recent years. However, not much work has been done using FIB to fabricate carbon nanotube devices. This is mainly due to the fact that carbon nanotubes are very fragile and energetic ion beam from FIB can easily damage the carbon nanotubes. Here we report the fabrication of carbon nanotube (CNT) devices, including electron field emitters, atomic force microscope tips, and nano-pores for biomedical applications. This is made possible by a unique, coaxial configuration consisting of a CNT embedded in a graphitic carbon coating, which was developed by us for FIB processing of carbon nanotubes. The CNT-based atomic force microscope tip has been demonstrated. The electron field emission from the tip and the side wall of CNT will be discussed. We will also report the fabrication of a multiwall carbon nanotube nanopore for future applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature 354, 56 (1991).Google Scholar
2. Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T., and Smalley, R. E., Nature 384, 147 (1996).Google Scholar
3. Heer, W. A. De, Chatelain, A., and Ugarte, D., Science, 270 1179 (1995).Google Scholar
4. Trans, S. J., Verschuren, A. R. M., and Dekker, C., Nature 393, 49 (1998).Google Scholar
5. Collins, P. G. and Zettl, A., Appl. Phys. Lett. 69, 1969 (1996).Google Scholar
6. Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, C., Science, 294, 1317 (2001).Google Scholar
7. Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M., Nature, 381, 678 (1996).Google Scholar
8. Rinzler, G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Colbert, D. T., and Smalley, R. E., Science, 269, 1550 (1995).Google Scholar
9. Orloff, J., Utlaut, M., and Swanson, L., “High Resolution Focused Ion Beams”, Kluwer Academic/Plenum Publishers, New York, (2003).Google Scholar
10. Giannuzzi, L. A. and Stevie, F., “Introduction to Focused Ion Beams: Theory, Instrumentation, Applications, and Practice”, Springer, NY (2005).Google Scholar
11. , Wagner, Levin, J. P., Mauer, J. L., Blauner, P. G., Kirch, S. J., and Longo, P., Journal of Vacuum Science & Technology B, 8, 1557 (1990).Google Scholar
12. Tseng, A. A., Small, 1 924 (2005).Google Scholar
13. Raghuveer, M. S., Ganesan, P. G., Arcy-Gall, J. D, and Ramanath, G., Appl. Phys. Lett., 84,4484 (2004).Google Scholar
14. Jung, Y.J., Homma, Y., Vajtai, R., Kobayashi, Y., Ogino, T., and Ajayan, P. M., Nano Letters, 4, 1109 (2004).Google Scholar
15. Deng, Z., Yenilmez, E., Reilein, A., Leu, J., Dai, H., and Moler, K. A., Appl. Phys. Lett., 88, 023119 (2006).Google Scholar
16. Han, C. S., Park, J. K., Yoon, Y. H., and Shin, Y. H., Carbon, 44, 3348 (2006).Google Scholar
17. Kim, M. J., Haroz, E., Wang, Y., Shan, H., Nicholas, N., Kittrell, C., Moore, V. V., Jung, Y., Luzzi, D., Wheeler, R., BensonTolle, T., Fan, H., Da, S., Hwang, W., Wainerdi, T. J., Schmidt, H., Hauge, R. H., and Smalley, R. E., Nano Letters, 7, 15 (2007).Google Scholar
18. Maehashi, K., Ozaki, H., Ohno, Y., Inoue, K., Matsumoto, K., Seki, S., and Tagawa, S., Appl. Phys. Lett., 90, 023103 (2007).Google Scholar
19. Kleckley, S., Chai, G. Y., Zhou, D., Vanfleet, R., and Chow, L., Carbon, 41 833 (2003).Google Scholar
20. Chai, G. and Chow, L., Carbon, 45, 281 (2007).Google Scholar
21. Chai, G., Chow, L., Zhou, D., and Byahut, S. P., Carbon 43, 2083 (2005).Google Scholar
22. Meller, A., Nivon, L., and Branton, D., Phys. Rev. Lett. 86, 3435 (2001).Google Scholar
23. Schmidt, C., Mayer, M., and Vogel, H., Angew. Chem. Int. Edn, 39, 3137 (2000).Google Scholar
24. Fertig, N. et al. , Phys. Rev. E 64, 040901 (2001).Google Scholar
25. Dekker, C., Nature Nanotechnology, 1, to appear. (2007).Google Scholar
26. Siwy, Z. and Fulinski, A., Phys. Rev. Lett. 89, 198103 (2002).Google Scholar
27. , Yamaguchi, Shibata, M., and Hashinaga, T., Journal of Vacuum Science & Technology B, 11, 2016 (1993).Google Scholar
28. Bennett, C. H. and DiVincenzo, D. P., Nature 404, 247 (2000).Google Scholar
29. Kane, B. E., Nature 393, 133 (1998).Google Scholar
30. Schenkel, T., Persaud, A., Park, S. J., Nilsson, J., Bokor, J., Liddle, J. A., Keller, R., Schneider, R. H., Cheng, D. W., and Humphries, D. E., J. Appl. Phys. 94, 7017 (2003).Google Scholar
31. Schenkel, T., Radmilovic, V., Stach, E. A., Park, S. J., and Persaud, A., J. Vac. Sci. & Tech. B 21, 2720 (2003).Google Scholar
32. Krasheninnikov, A. V. and Nordlund, K., Phys. Rev. B 71, 245408 (2005).Google Scholar