Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T08:16:02.392Z Has data issue: false hasContentIssue false

Fabrication, Processing and Characterization of Thin Film ZnO for Integrated Optical Gas Sensors

Published online by Cambridge University Press:  31 January 2011

Eliana Kamińska
Affiliation:
eliana@ite.waw.pl, Institute of Electron Technology, Warsaw, Poland
Anna Piotrowska
Affiliation:
ania@ite.wa.pl, Institute of Electron Technology, Warsaw, Poland
Iwona Pasternak
Affiliation:
iwonap@ite.waw.pl, Institute of Electron Technology, Warsaw, Poland
Marek Ekielski
Affiliation:
ekielski@ite.waw.pl, Institute of Electron Technology, Warsaw, Poland
Krystyna Gołaszewska
Affiliation:
krystyg@ite.waw.pl, Institute of Electron Technology, Warsaw, Poland
Witold Rzodkiewicz
Affiliation:
rzodki@ite.waw.pl, Institute of Electron Technology, Warsaw, Poland
Tomasz Wojciechowski
Affiliation:
twojcie@ifpan.edu.pl, Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
Elżbieta Dynowska
Affiliation:
dynow@ifpan.edu.pl, Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
Przemysław Struk
Affiliation:
Przemyslaw.Struk@polsl.pl, Silesian Univeristy of Technology, Gliwice, Poland
Tadeusz Pustelny
Affiliation:
Tadeusz.Pustelny@polsl.pl, Silesian University of Technology, Gliwice, Poland
Get access

Abstract

Zinc oxide layers deposited on quartz substrates by means of RF reactive magnetron sputtering with subsequent RTP annealing in a nitrogen flow at 400°C and in an oxygen flow at 500°C have been investigated in applications to waveguide structures. The ZnO films reveal a highly c-oriented columnar structure with a surface roughness of 4.3 nm. Annealing causes a significant increase of the lattice constant to the value of 5.210±0.001 Å suggesting the relaxation of the stress in the film. The annealing process causes a significant improvement of propagation properties of the fabricated waveguide structures in comparison to structures using as-deposited ZnO films. The minimal attenuation coefficient of the 630 nm thick films was found to be 2.8 and 3.0 dB/cm for TE0 and TM0 modes respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lambeck, P.V., Meas. Sci. Technol. 17, R93 (2006).10.1088/0957-0233/17/8/R01Google Scholar
2 Mazingue, T., Escoubas, L., Spalluto, L., Flory, F., Jacquouton, P., Perrone, A., Kamińska, E., Piotrowska, A., Mihailescu, I., Atanasov, P., Applied Optics 45(7), 1425 (2006).10.1364/AO.45.001425Google Scholar
3 Atanas, J.P., Asmar, R., Khoury, A., Foucaran, A., Sensors and Actuators A 127, 49 (2006).10.1016/j.sna.2005.11.065Google Scholar
4 Kim, H.W., Kim, N.H., Materials Science and Engineering B 103, 297 (2003).10.1016/S0921-5107(03)00281-2Google Scholar
5 Mehan, N., Gupta, V., Sreenivas, K., Mansingh, A., J. Appl. Phys. 96(6), 3134 (2004).10.1063/1.1774267Google Scholar
6 Ryu, M.K., Lee, S.H., Jang, M.S., Panin, G. N., Kang, T.W., J. Appl. Phys. 92(1), 154 (2002).10.1063/1.1483371Google Scholar
7 Lin, S.S., Huang, J.L., Lii, D.F., Surface and Coatings Technology 176, 173 (2004).10.1016/S0257-8972(03)00665-0Google Scholar
8 Hiramatsu, T., Furuta, M., Furuta, H., Matsuda, T., Jpn. J. Appl. Phys. 46(6A), 3319 (2007).10.1143/JJAP.46.3319Google Scholar
9 Ondo-Ndon, R., Pascal-Delannoy, F., Boyer, A., Giani, A., Foucaran, A., Materials Science and Engineering B 987, 68 (2003).10.1016/S0921-5107(02)00406-3Google Scholar