Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T13:12:39.387Z Has data issue: false hasContentIssue false

Fabrication of One-dimensional Silicon Nano-wires Based on Proximity Effects of Electron-beam Lithography

Published online by Cambridge University Press:  01 February 2011

S. F. Hu
Affiliation:
Taiwan Spin Research Center, National Chung Cheng University, Chia-Yi 621, Taiwan
C. L. Sung
Affiliation:
National Nano Device Laboratories, Hsinchu 30078, Taiwan
Get access

Abstract

One-dimensional silicon nanowire structures have been successfully made by using the proximity and accumulation effects of electron-beam (e-beam) lithography. Wire structures are fabricated in a thin poly silicon layer on a silicon substrate with a 400 nm buried SiO2. Measurements of the current-voltage characteristics at various temperatures from 4 K up to 300 K show significant nonlinearities and single-electron effect behavior. The blockade size is significantly affected by thermal effects, oscillations of the blockade, and the conductivity dependence on the gate potential.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Zhuang, L., Guo, L., and Chou, S. Y., Appl. Phys. Lett. 72, 1205 (1998).10.1063/1.121014Google Scholar
2 Ishikuro, H. and Hiramoto, T., Appl. Phys. Lett. 71, 3691 (1997).10.1063/1.120483Google Scholar
3 Ishikuro, H., Fujii, T., Saraya, T., Hashiguchi, G., Hiramoto, T., and Ikoma, T., Appl. Phys. Lett. 68, 3585 (1996).10.1063/1.116645Google Scholar
4 Takahashi, N., Ishikuro, H. and Hiramoto, T., Appl. Phys. Lett. 76, 209 (2000).10.1063/1.125704Google Scholar
5 Stone, N. J. and Ahmed, H., Electron. Lett. 35, 1883 (1999).10.1049/el:19991231Google Scholar
6 Ono, Y., Takahashi, Y., Yamazaki, K., Nagase, M., Namatsu, H., Kurihara, K. and Muras, K., Appl. Phys. Lett. 76, 3121 (2000).10.1063/1.126543Google Scholar
7 Nakajama, A., Futatsugi, T., Kosemura, K., Fukano, T., and Yokoyama, N., Appl. Phys. Lett. 70, 1742 (1997).10.1063/1.118653Google Scholar
8 Irvine, A.C., durrani, Z. A. K., and Ahmed, H., J. appl. Phys. 87, 8594 (2000).10.1063/1.373584Google Scholar
9 Liu, K., Avouris, Ph., Bucchignano, J., Martel, R., Sun, S. and Michl, J., Appl. Phys. Lett. 80, 865 (2002).10.1063/1.1436275Google Scholar
10 Hashiguchi, G. and Mimura, H., Jpn. J. Appl. Phys., Part 2 33, L1649 (1994)10.1143/JJAP.33.L1649Google Scholar
11 Waugh, F. R., Berry, M. J., Mar, D. J., Westervelt, R. M., Champman, K. L., and Gossard, A. C., Phys. Rev. Lett. 75, 705 (1995).10.1103/PhysRevLett.75.705Google Scholar
12 Muller, H. O., Williams, D. A., mizuta, H., Durrani, Z. A. K., Mater. Sci. Eng. B 74, 3639 (2000).10.1016/S0921-5107(99)00530-9Google Scholar
13 Smith, R. A., Ahmed, H., J. Appl. Phys. 81, 26992703 (1997).10.1063/1.363934Google Scholar
14 Transport in nanostructures, edited by Ferry, D. K., Goodniik, S. M. (Cambridge University press, 1997).10.1017/CBO9780511626128Google Scholar