Published online by Cambridge University Press: 15 February 2011
New Bi-based chalcogenide compounds have been prepared using the polychalcogenide flux technique for crystal growth. These materials exhibit characteristics of good thermoelectric materials. Single crystals of the compound CsBi4Te6 have shown conductivity as high as 2440 S/cm with a p-type thermoelectric power of ≈ +110 μV/K at room temperature. A second compound, β-K2Bi8Se13 shows lower conductivity ≈ 240 S/cm, but a larger n-type thermopower ≈ −200 μV/K. Thermal transport measurements have been performed on hot-pressed pellets of these materials and the results show comparable or lower thermal conductivities than Bi2Te3. This improvement may reflect the reduced lattice symmetry of the new chalcogenide thermoelectrics. The thermoelectric figure of merit for CsBi4Te6 reaches ZT ≈ 0.32 at 260 K and for β-K2Bi8Se13 ZT ≈ 0.32 at room temperature, indicating that these compounds are viable candidates for thermoelectric refrigeration applications.