Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T06:21:00.988Z Has data issue: false hasContentIssue false

Controlling CoSi2 nucleation : the effect of entropy of mixing

Published online by Cambridge University Press:  14 March 2011

C. Detavernier
Affiliation:
Laboratorium voor Kristallografie en Studie van de Vaste Stof, Universiteit Gent, Krijgslaan 281/S1, B-9000 Gent, Belgium
R.L. Van Meirhaeghe
Affiliation:
Laboratorium voor Kristallografie en Studie van de Vaste Stof, Universiteit Gent, Krijgslaan 281/S1, B-9000 Gent, Belgium
K. Maex
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium also at E.E. Dept, K.U. Leuven, B-3001 Leuven, Belgium
F. Cardon
Affiliation:
Laboratorium voor Kristallografie en Studie van de Vaste Stof, Universiteit Gent, Krijgslaan 281/S1, B-9000 Gent, Belgium
Get access

Abstract

It is generally known that nucleation effects strongly influence the CoSi to CoSi2 phase transition. According to classical nucleation theory, the small difference in Gibbs free energy between the CoSi and CoSi2 phase is responsible for the nucleation barrier. Adding elements that are soluble in CoSi and insoluble in CoSi2 will influence the entropy of mixing, and thus change ΔG. In this way, the height of the nucleation barrier may be controlled.

By depositing Fe or Ge (respectively replacing Co and Si in the CoSi lattice) in between the Co and the Si substrate, we were able to increase the nucleation barrier. In the presence of Ni, the nucleation barrier is lowered, and low-resistive disilicide is formed at lower temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. d'Heurle, F.M., Petersson, C.S., Thin Sol. Films 128, 283 (1985).Google Scholar
2. Appelbaum, A., Knoell, R.V., Murarka, S.P., J. Appl. Phys. 57, 1880 (1985).Google Scholar
3. d'Heurle, F.M., J. Mater. Res. 3, 167 (1988).Google Scholar
4. d'Heurle, F.M., Anfiteatro, D.D., Deline, V.R., Finstad, T.G., Thin Solid Films 128, 107 (1985).Google Scholar
5. Wald, F., Michalik, J., J. Less-Common Metals 24, 277 (1971).Google Scholar
6. Maex, K., Rossum, M. Van, Properties of Metal Silicides, INSPEC, 1995, p.283.Google Scholar
7. Maex, K., MRS Proc. Spring Meeting 2000 (also in this volume).Google Scholar