Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-14T04:40:41.266Z Has data issue: false hasContentIssue false

Comparative study of corrosion and tribocorrosion resistance of some biomaterials

Published online by Cambridge University Press:  03 September 2012

J. Takadoum
Affiliation:
FEMTO-St, ENSMM, 26 Chemin de l’éptaphe, 25030, Besançon, France
J. El Mansouri
Affiliation:
FEMTO-St, ENSMM, 26 Chemin de l’éptaphe, 25030, Besançon, France
S. Ivanescu
Affiliation:
R&D Consulting & Services, Str. Tudor Argezi, nr.21, Bucharest, Sector 2, Romania
D. Stanciu
Affiliation:
R&D Consulting & Services, Str. Tudor Argezi, nr.21, Bucharest, Sector 2, Romania
Get access

Abstract

Corrosion and tribocorrosion tests have been conducted on titanium, Ti-6Al-4V and Ti-10Zr-10Nb-5Ta alloys. The experiments have been conducted in four different electrolytes: NaCl solution, Ringer’s solution, phosphate buffered saline solution (PBS) with and without an addition of bovine serum albumin (BSA).

The electrochemical study showed that, whatever the electrolyte, the passivating film formed on Ti-10Zr-10Nb-5Ta surface is more stable than those obtained on the surface of titanium or Ti-6Al-4V alloy. In addition, Ti-10Zr-10Nb-5Ta presents a better resistance to corrosion. In PBS solution, open circuit potential (OCP) moved to more positive value in comparison with results obtained in NaCl and Ringer’s solutions, whereas addition of BSA moved OCP value towards more negative potential indicating a detrimental effect.

Tribocorrosion tests have been conducted at OCP when sliding against an alumina ball. Friction coefficient, current and volume of material removal at the end of tests have been measured and the results discussed. The influence of the presence of proteins molecules has been particularly analyzed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Takadoum, J., Igartua, A., in Testing tribocorrosion of passivating materials supporting research and industrial innovation, Ed. Celis, J. P., Ponthiaux, P., pp 15–28 (2011), Maney Publishing.Google Scholar
2. Takahashi, Masatoshi, Kikuchi, Masafumi, Takada, Yokyo, Okuna, Osamu, Materials Transactions, 51(4),762 (2010).10.2320/matertrans.M2009355Google Scholar
3. Zhang, B. B., Wang, B. L., Li, L., Materials and Corrosion – Werkstoffe und Korrosion, 62(8), 766 (2011).10.1002/maco.200905561Google Scholar
4. Kurosu, S., Nomura, N., Chiba, A., Materials Transactions, 47(8), 1961 (2006).10.2320/matertrans.47.1961Google Scholar
5. Neville, A., McDougall, B.A.B., Wear 250, 726 (2001).10.1016/S0043-1648(01)00709-8Google Scholar
6. Clark, G.C.F. and Williams, D.F., Journal of Biomedical Materials Research, 16, 126(1982).10.1002/jbm.820160205Google Scholar
7. Williams, R.L., Brown, S.A. and Merritt, K.: Biomaterials 9, 181–186 (1988).10.1016/0142-9612(88)90119-6Google Scholar
8. Kocijan, A., Milosev, I. and Philar, B.: Journal of Materials Science: Materials in Medicine 15, 634 (2004).Google Scholar
9. Jacobs, J. J. and Chicago, R. M., Journal of Bone and Joint Surgery 80-A, 268 (1988).10.2106/00004623-199802000-00015Google Scholar
10. Zhu, J., Xu, N., Zhang, C. C: Adv Contraception 15, 179 (1999).Google Scholar
11. Sun, D., Wharton, J. A., Wood, R. J. K., Tribology: Materials Surfaces and Interfaces 2 (3), 150 (2009).Google Scholar
12. Hiromoto, S., Mishler, S., Wear 261, 1002 (2006).10.1016/j.wear.2006.03.032Google Scholar
13. Karimi, Shima, Nickchi, Tirdad, Alfanzi, Akram, Corrosion science 53, 3262 (2011).10.1016/j.corsci.2011.06.009Google Scholar
14. Contu, F., Elsener, B., Bohni, H., Electrochemica Acta 50, 33 (2004).10.1016/j.electacta.2004.07.024Google Scholar
15. Khan, M. A., Williams, R.L., Williams, D. F., Biomaterials 20, 631 (1999).10.1016/S0142-9612(98)00217-8Google Scholar
16. Sánchez-Iglesias, Sofía, Méndez-Álvarez, Estefanía, Iglesias-González, Javier, Muñoz-Patiño, Ana, Sánchez-Sellero, Inés, Labandeira-García, José Luís, Soto-Otero, Ramón, Journal of Neurochemistry, 100(3), 879 (2009).10.1111/j.1471-4159.2009.06019.xGoogle Scholar
17. Mishibata, Hitoshi Ed., Vanadium Biochemical and Molecular Biological Approaches, Springer, 2012.Google Scholar
18. Matsuno, Hironobu, Yokoyama, Atsuro, Watari, Frumio, Uo, Motohiro, Kawasaki, Takao, Biomaterials, 22, 1253 (2001).10.1016/S0142-9612(00)00275-1Google Scholar
19. Olivares-Navarrette, René, Jairo Olaya, Jhon, Ramirez, Claudia, Elizabeth Rodil, Sandra, Coatings, 1, 72 (2011).10.3390/coatings1010072Google Scholar
20. Steinmann, SG, in Evaluation of Biomaterials. Ed. Winter GD, G.D., Leray, J.L., de Groot, K., pp.1-34 (1980), John Wiley & Sons; New York, NY, USA.Google Scholar
21. Vasilescu, E., Drop, P., Ionita, D., Ivanescu, S., Vasilescu, C., International Journal of Environmental Science and Development 1(1), 31 (2010).10.7763/IJESD.2010.V1.7Google Scholar
22. More, N.S., Diomidis, N., Paul, S.N., Roy, M., Mischler, S., Materials Science and Engineering C 31(2),400 (2011).10.1016/j.msec.2010.10.021Google Scholar
23. Henry, P.; Takadoum, J.; Bercot, P, Corrosion Science 51 (6), 1308 (2009).10.1016/j.corsci.2009.03.015Google Scholar
24. Valerio Vidal, C., Igual Munoz, A., Corrosion Science 50, 1954 (2006).10.1016/j.corsci.2008.04.002Google Scholar
25. Hanawa, T., Hiromoto, S., Asami, K., Applied Surface Science 183 68 (2001).10.1016/S0169-4332(01)00551-7Google Scholar
26. Khan, M.A., Williams, R.L., Williams, D.F., Biomaterials 20, 765 (1999).10.1016/S0142-9612(98)00229-4Google Scholar
27. Hiromoto, S., Mischler, S., Wear 261, 1002 (2006).10.1016/j.wear.2006.03.032Google Scholar