Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-04T10:12:56.624Z Has data issue: false hasContentIssue false

Application of Diluted Magnetic Semiconductors and Quantum Dots to Spin Polarized Light Sources

Published online by Cambridge University Press:  01 February 2011

Pallab Bhattacharya
Affiliation:
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109–2122, U.S.A.
Sasan Fathpour
Affiliation:
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109–2122, U.S.A.
Subhananda Chakrabarti
Affiliation:
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109–2122, U.S.A.
Michael Holub
Affiliation:
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109–2122, U.S.A.
Siddhartha Ghosh
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, U.S.A..
Get access

Abstract

The magnetic properties of single and multiple layers of GaMnAs, grown by molecular beam epitaxy, have been investigated for application as spin injector layers in spin polarized lights sources. Curie temperatures, TC, as high as 150K have been measured in 15nm Ga0.95Mn0.05As films and similar results are obtained for multiple thin layers of GaMnAs separated by 5nm thick GaAs layers. We have also investigated the properties of self-organized InMnAs quantum dots buried in a GaAs or GaMnAs matrix. Magnetization measurements indicate TC >300K in the dot heterostructures. Light-emitting diode heterostructures with 150nm Ga0.95Mn0.05As spin injector layers and In0.4Ga0.6As quantum dot active regions were grown and fabricated into 600μm diameter mesa-shaped surface-emitting devices. Polarized light at 1.05μm is observed with an output polarization efficiency of 26% at a record high temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Divincenzo, D. P., Science 270, 255 (1995).Google Scholar
2. Ohno, H., Science 281, 951 (1998).Google Scholar
3. Ohno, H., Shen, A., Matsukara, F., Oiwa, A., Endo, A., Katsumoto, S., and Iye, Y., Appl. Phys. Lett. 69, 363 (1996).Google Scholar
4. Munekata, H., Ohno, H., von Molnar, S., Segmuller, A., Chang, L. L., and Esaki, L., Phys. Rev. Lett. 63, 1849 (1989).Google Scholar
5. Potashnik, S. J., Ku, K. C., Chun, S. H., Berry, J. J., Samath, N., and Schiffer, P., Appl. Phys. Lett. 79, 1495 (2001).Google Scholar
6. Hayashi, T., Hashimoto, Y., Katsumoto, S. and Iye, Y., Appl. Phys. Lett. 78, 1691 (2001).Google Scholar
7. Saito, H., Nishi, K., Ogura, I., Sugou, S., and Sugimoto, Y., Appl. Phys. Lett. 69, 3140 (1996).Google Scholar
8. Bimberg, D., Kirstaedter, N., Ledenstov, N. N., Alferov, Zh. I., Kop'ev, P.S., and Ustinov, V. M., IEEE J. Sel. Top. Quant. Electron. 3. 196 (1997).Google Scholar
9. Bhattacharya, P., Kamath, K., Singh, J., Klotzkin, D., Phillips, J., Jiang, H., Chervela, N., Norris, T., Sosonowski, T., Laskar, J., and Ramanamurty, N., IEEE Trans. Electron Devices 46, 871 (1999).Google Scholar
10. Lenihan, A. S., Gurdev Dutt, M. V., Steel, D. G., Ghosh, S., and Bhattacharya, P. K., Phys. Rev. Lett. 88, 223601–1 (2002).Google Scholar
11. Ohno, Y., Young, D. K., Beschoten, B., Matsukura, F., Ohno, H., and Awschalom, D. D., Nature 402, 780 (1999).Google Scholar
12. Fiederling, R., Keim, M., Reuscher, G., Ossau, W., Schmidt, G., Waag, A., and Molenkamp, L. W., Nature 402, 787 (1999).Google Scholar
13. Schmidt, G. and Molenkamp, L. W., Physica E 9, 202 (1999).Google Scholar
14. Schneider, J., Kaufmann, U., Wilkening, W., Baeumler, M., and Kohl, F., Phys. Rev. Lett. 59, 240 (1987).Google Scholar
15. Van Esch, A., Van Boscktal, L., De Bock, J., Verbanck, G., van Steenbergen, A. S., Wellmann, P. J., Grietens, B., Bogaerts, R., Herlach, F., and Borghs, G., Phys. Rev. B. 20, 13103 (1997).Google Scholar
16. Dietl, T., Ohno, H., Matukura, F., Cibert, J., and Ferrand, D., Science 287, 1019 (2000).Google Scholar
17. Ghosh, S. and Bhattacharya, P., Appl. Phys. Lett. 80, 658 (2002).Google Scholar
18. Ghosh, S. and Bhattacharya, P., J. Vac. Sci. Technol. B. 20, 1182 (2002).Google Scholar
19. König, J., Lin, Hsiu-Hau, and MacDonald, A. H., Phys. Rev. Lett. 84 5628 (2000).Google Scholar
20. Sanvito, S., Ordejón, P., and Hill, N. A., Phys. Rev. B 63 165206 (2001).Google Scholar
21. Lee, S., Chung, J., Choi, I. S., Yuldeshev, Sh U., Im, Hyunsik, Kang, T. W., Lim, W. –L., Sasaki, Y., Liu, X., Wojtowicz, T., and Furdyna, J. K., J. Appl. Phys. 93, 8307 (2003).Google Scholar
22. Ku, K. C., Potashnik, S. J., Wang, R. F., Chun, S. H., Schiffer, P., Samarth, N., Seong, M. J., Mascarehas, A., Johnston-Halperin, E., Myers, R. C., Gossard, A. C., and Awschalom, D. D., Appl. Phys. Lett. 82, 2302 (2003).Google Scholar
23. Sørensen, B. S., Lindelof, P. E., Sadowski, J., Mathieu, R., and Svedlindh, P., Appl. Phys. Lett. 82, 2287 (2003).Google Scholar
24. Yu, K. M., Walukiewicz, W., Wojtowicz, T., Kuryliszyn, I., Liu, X., Sasaki, Y., and Furdyna, J. K., Phys. Rev. B 65, 201303(R) (2002).Google Scholar
25. Guo, S. P., Shen, A., Matuskara, F., Ohno, Y., and Ohno, H., J. Crystal Growth, 208, 799 (2000).Google Scholar
26. Berciu, and Bhatt, R. N., Phys. Rev. Lett. 87, 107203 (2001).Google Scholar