Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T13:17:20.867Z Has data issue: false hasContentIssue false

Anisotropically Nanostructured Silicon: A First-Principle Approach.

Published online by Cambridge University Press:  01 February 2011

Yuri Bonder
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70–360, 04510, México D.F., MEXICO.
Chumin Wang*
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70–360, 04510, México D.F., MEXICO.
Get access

Abstract

Optical properties of birefringent porous-silicon layers are studied within the density functional theory. Starting from a (110)-oriented supercell of 32 silicon atoms, columns of atoms in directions [100] and [010] are removed and the dangling bonds are saturated with hydrogen atoms. The results show an in-plane anisotropy in the dielectric function and in the refractive index (n). The difference Δn defined as n[110] -n[001] is compared with experimental data and a good agreement is observed. Also, the possibility in determining the morphology of pores by using polarized lights is analyzed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Departamento de Física, Facultad de Ciencias, UNAM, Apartado Postal 70–542, 04510, México D.F., MEXICO.

References

REFERENCES

[1] Chuang, S.-F., Collins, S.D., and Smith, R.L., Appl. Phys. Lett. 55, 675 (1989).Google Scholar
[2] Cullis, A.G., Canham, L.T., and Calcott, P.D.J., J. Appl. Phys. 82, 909 (1997).Google Scholar
[3] Diener, J., Künzner, N., Kovalev, D., Gross, E., Timoshenko, V. Yu., Polisski, G., and Koch, F., Appl. Phys. Lett. 78, 3887 (2001).Google Scholar
[4] Gross, E., Kovalev, D., Künzner, N., Timoshenko, V. Yu., Diener, J., and Koch, F., J. Appl. Phys. 90, 3529 (2001).Google Scholar
[5] Dürr, H.A., Dudzik, E., Dhesi, S.S., Goedkoop, J.B., van der Laan, G., Belakhovsky, M., Mocuta, C., Marty, A., and Samson, Y., Science 284, 2166 (1999).Google Scholar
[6] Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
[7] Hybertsen, M.S. and Louie, S.G., Phys. Rev. B 34, 5390 (1986).Google Scholar
[8] Del Sole, R. and Girlanda, R., Phys. Rev. B 48, 11789 (1993).Google Scholar
[9] Harris, J. and Jones, R.O., J. Phys. F 4, 1170 (1974).Google Scholar
[10] Troullier, N. and Martins, J.L., Phys. Rev. B 43, 1993 (1991).Google Scholar
[11] Accelrys Inc., CASTEP Users Guide, (San Diego, Accelrys Inc., 2001).Google Scholar
[12] Milman, V., Winkler, B., White, J.A., Pickard, C.J., Payne, M.C., Akhmatskaya, E.V., and Nobes, R.H., Int. J. Quant. Chem. 77, 895 (2000).Google Scholar
[13] Monkhorst, H.J. and Pack, J.D., Phys. Rev. B 13, 5188 (1976).Google Scholar
[14] Cruz, M., Beltrán, M.R., Wang, C., Tagüeña-Martínez, J., and Rubo, Y.G., Phys. Rev. B 59, 15381 (1999).Google Scholar
[15] Vázquez, E., Tagüeña-Martínez, J., Sansores, L.E., and Wang, C., J. Appl. Phys. 91, 3085 (2002).Google Scholar
[16] Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Recipes, (Cambridge, Cambridge University Press, 1986).Google Scholar
[17] Buttard, D., Bellet, D., and Dolino, G., J. Appl. Phys. 83, 5814 (1998).Google Scholar
[18] Cruz, M., Wang, C., Beltrán, M. R., and Tagüeña-Martínez, J., Phys. Rev. B 53, 3827 (1996).Google Scholar
[19] Kovalev, D., Polisski, G., Diener, J., Heckler, H., Künzner, N., Timoshenko, V. Yu., and Koch, F., Appl. Phys. Lett. 78, 916 (2001).Google Scholar
[20] Bruggeman, D.A.G., Annalen der Physik (Paris) 24, 636 (1935).Google Scholar
[21] Berthier, S., J. Phys. I. France 4, 303 (1994).Google Scholar