Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T18:15:01.824Z Has data issue: false hasContentIssue false

An Investigation of Vacancy Concentrations in Bulk Silicon

Published online by Cambridge University Press:  03 September 2012

Horst Zimmermann
Affiliation:
Fraunhofer-Arbeitsgruppe für Integrierte Schaltungen, Artilleriestrasse 12, W-8520 Erlangen, Germany
H. Ryssel
Affiliation:
Fraunhofer-Arbeitsgruppe für Integrierte Schaltungen, Artilleriestrasse 12, W-8520 Erlangen, Germany
Get access

Abstract

A method will be presented, which allows the quantitative determination of distributions of single vacancies in bulk silicon. The method uses deep level transient spectroscopy (DLTS) measurements of the platinum or gold concentration after diffusion at a low temperature. An analytical expression allows the calculation of the vacancy concentration from the measured platinum or gold concentration. Vacancy concentrations vary at least from 2.0×1012 to 2.2×1014 cm3 in float zone silicon. The vacancy concentrations in Czrochalski (CZ) silicon are in the range of 4×1012 to 2×1013 cm3. Microwave photoconductive decay instead of DLTS allows much faster measurements of vacancy distributions on whole wafers. Furthermore, both methods allow the investigation of oxygen precipitation in CZ silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Patel, J. R., Jackson, K. A., and Reiss, H., J. Appl. Phys. 48, 5279 (1977).CrossRefGoogle Scholar
2. Schrems, M., Pongratz, P., Budil, M., Pötzl, H. W., Hage, J., Guerrero, E., and Huber, D., in Semiconductor Silicon 1990, edited by Huff, H. R. (The Electrochemical Society, Pennington, 1991) p. 144.Google Scholar
3. Roksnoer, P. J. and Van Den Boom, M. M. B., J. Crystal Growth 53, 563 (1981).CrossRefGoogle Scholar
4. Abe, T. and Kimura, M., in Semiconductor Silicon 1990, edited by Huff, H. R. (The Electrochemical Society, Pennington, 1991) p. 105.Google Scholar
5. Fujimaki, N., Fusegawa, I., Katayama, M., and Yamagishi, H., in Proceed ings of the 40th Symposium on Semiconductors and Integrated Circuits Technology (Electrochemical Society of Japan, Tokyo, 1991) p. 55.Google Scholar
6. Dannefaer, S., Mascher, P., and Kerr, D., Phys. Rev. Lett. 56, 2195 (1986).Google Scholar
7. Okada, Y., Phys. Rev. B 41, 10471 (1990).Google Scholar
8. Frank, F. C. and Turnbull, D., Phys. Rev. 104, 617 (1956).Google Scholar
9. Gösele, U., Frank, W., and Seeger, A., Appl. Phys. 23, 361 (1980).Google Scholar
10. Law, M. E. and Dutton, R. W., IEEE Transactions on Computer-Aided Design 7, 181 (1988).Google Scholar
11. Zimmermann, H. and Ryssel, H., J. Electrochem. Soc. 139, 256 (1992).CrossRefGoogle Scholar
12. Zimmermann, H. and Ryssel, H., Phys. Rev. B 44, 9064 (1991).Google Scholar
13. Yang, W., PhD thesis, Duke University, 1991.Google Scholar
14. Boda, J., Ferenczi, G., Horvath, P., Pavelka, T., and Mirk, Z., Hungarian Patent Application No. 43934/90.Google Scholar
15. Pavelka, T. (private communication).Google Scholar
16. Zimmermann, H. and Falster, R., Appl. Phys. Lett, (unpublished).Google Scholar