Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-04T01:19:47.820Z Has data issue: false hasContentIssue false

AlGaN/InGaN Heterostructure Field Effect Transistors Grown on Sapphire by Metal-Organic Chemical Vapor Deposition

Published online by Cambridge University Press:  17 March 2011

Chang-Cheng Chuo
Affiliation:
Department of Electrical Engineering, National Central University, Chung-Li, Taiwan, 32054, R.O.C.
Chia-Min Kan
Affiliation:
Department of Electrical Engineering, National Central University, Chung-Li, Taiwan, 32054, R.O.C.
Jen-Inn Chyi
Affiliation:
Department of Electrical Engineering, National Central University, Chung-Li, Taiwan, 32054, R.O.C.
Tzer-En Nee
Affiliation:
Department of Electrical Engineering, National Central University, Chung-Li, Taiwan, 32054, R.O.C.
Chia-Ming Lee
Affiliation:
Department of Electrical Engineering, National Central University, Chung-Li, Taiwan, 32054, R.O.C.
Chin-Kun Peng
Affiliation:
Procomp Informatics, Science-Based Industrial Park, Hsinchu, Taiwan 300, R.O.C.
Get access

Abstract

AlGaN/InGaN heterostructure field effect transistors were grown on sapphire by metalorganic chemical vapor deposition. Transmission electron microscopy shows that there are no additional dislocations induced by inserting the InGaN channel while a variation of strain field across the channel is observed. The transistors exhibit good pinch-off characteristics with a threshold voltage of about −2.9 V and a saturation current density of 0.55 A/mm. At room temperature, a peak transconductance of 132 (mS/mm) was obtained for a 1.0 μm-device. Current gain cutoff frequency fT of 9.4 GHz and maximum oscillation frequency fmax of 28.2 GHz were measured for the 1.0 μm-device. As the temperature is increased to 300 °C, the transconductance decreases to 50 mS/mm accompanied by a reduction of saturation current density of 0.24 A/mm due to the enhanced carrier scattering, gate leakage, and drain-source resistance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ping, A. T., Chen, Q., Yang, J. W., Khan, M. A., and Adesida, I., IEEE Electron Device Lett. 19, 54 (1998).Google Scholar
2. Gelmont, B., Kim, K. S., and Shur, M., J. Appl. Phys. 74, 1818 (1993).Google Scholar
3. Khan, M. A., Chen, Q., Shur, M. S., Dermott, B. T., Higgins, J. A., Burm, J., Schaff, W. J., and Eastman, L. F., IEEE Electron Device Lett. 17, 584 (1996).Google Scholar
4. Wu, Y. F., Keller, B. P., Keller, S., Nguyen, N. X., Le, M., Ngyen, C., Jenkens, T. J., Kehias, L. T., DenBaars, S. P., and Mishra, U. K., IEEE Electron Device Lett. 18, 438 (1997).Google Scholar
5. Fiorentini, V., Bernardini, F., Sala, F. D., Carlo, A. D., and Lugli, P., Phys. Rev. B 60, 8849 (1999).Google Scholar
6. Ambacher, O., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Schaff, W. J., Eastman, L. F., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W., and Hilsenbeck, J., J. Appl. Phys. 85, 3222 (1999).Google Scholar
7. Chao, P. C., Swanson, A., Brown, A., Mishra, U., Ali, F., and Yuen, C., HEMTs & HBTs: Devices, Fabrication, and Circuits, edited by Ali, F. and Gupta, A. (Artech House, 1991), p. 103.Google Scholar
8. Yu, E. T., Dang, X. Z., Yu, L. S., Qiao, D., Asbeck, P. M., Lau, S. S., Sullivan, G. J., Boutros, K. S., and Redwing, J. M., Appl. Phys. Lett. 73, 1880 (1998).Google Scholar
9. Wu, X. H., Elsass, C. R., Abare, A., Mack, M., Keller, S., Petroff, P. M., DenBaars, S. P., Speck, J. S., and Rosner, S. J., Appl. Phys. Lett. 72, 692 (1998).Google Scholar
10. Sharma, N., Thomas, P., Tricker, D., and Humphreys, C., Appl. Phys. Lett. 78, 1274 (2000).Google Scholar
11. Deng, J., Gaska, R., Shur, M. S., Khan, A., and Yang, J. W., MRS Internet J. Nitride Semicond. Res. 5S1, W4.5 (2000).Google Scholar
12. Shur, M. S., GaAs Devices and Circuits (Plenum, New York, 1987).Google Scholar