Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T14:07:09.350Z Has data issue: false hasContentIssue false

Grain boundary stability and influence on ionic conductivity in a disordered perovskite—a first-principles investigation of lithium lanthanum titanate

Published online by Cambridge University Press:  05 December 2016

Kathleen C. Alexander*
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
P. Ganesh
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Miaofang Chi
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Paul Kent
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Computer Science & Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Bobby G. Sumpter
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Computer Science & Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
*
Address all correspondence to Kathleen Alexander, P. Ganesh at katcalex@mit.edu, ganeshp@ornl.gov
Get access

Abstract

The origin of ionic conductivity in bulk lithium lanthanum titanate, a promising solid electrolyte for Li-ion batteries, has long been under debate, with experiments showing lower conductivity than predictions. Using first-principles-based calculations, we find that experimentally observed type I boundaries are more stable compared with the type II grain boundaries, consistent with their observed relative abundance. Grain boundary stability appears to strongly anti-correlate with the field strength as well as the spatial extent of the space charge region. Ion migration is faster along type II grain boundaries than across, consistent with recent experiments of increased conductivity when type II densities were increased.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mrgudich, J.N.: Conductivity of silver iodide pellets for solid-electrolyte batteries. J. Electrochem. Soc. 107, 475 (1960).Google Scholar
2. Takada, K.: Progress and prospective of solid-state lithium batteries. Acta Mater. 61, 759770 (2013).Google Scholar
3. Inaguma, Y., Liquan, C., and Itoh, M.: High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689693 (1993).Google Scholar
4. Inaguma, Y. and Nakashima, M.: A rechargeable lithium–air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator. J. Power Sources 228, 250255 (2013).Google Scholar
5. Mei, A., Wang, X., Feng, Y., Zhao, S., Li, G., Geng, H., Lin, Y., and Nan, C.: Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by introducing silica. Solid State Ion. 179, 22552259 (2008).CrossRefGoogle Scholar
6. Momma, K. and Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 12721276 (2011).Google Scholar
7. Cheng, Y.Q., Bi, Z.H., Huq, A., Feygenson, M., Bridges, C.A., Paranthaman, M.P., and Sumpter, B.G.: An integrated approach for structural characterization of complex solid state electrolytes: the case of lithium lanthanum titanate. J. Mater. Chem. A 2, 2418 (2014).Google Scholar
8. Qian, D., Xu, B., Cho, H.-M., Hatsukade, T., Carroll, K.J., and Meng, Y.S.: Lithium lanthanum titanium oxides: a fast ionic conductive coating for lithium-ion battery cathodes. Chem. Mater. 24, 27442751 (2012).CrossRefGoogle Scholar
9. Bohnke, O., Bohnke, C., and Fourquet, J.L.: Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate. Solid State Ion. 91, 2131 (1996).Google Scholar
10. Bohnke, O., Duroy, H., Fourquet, J.L., Ronchetti, S., and Mazza, D.: In search of the cubic phase of the Li+ ion-conducting perovskite La2/3−x Li3x TiO3: structure and properties of quenched and in situ heated samples. Solid State Ion. 149, 217226 (2002).Google Scholar
11. Bohnke, O., Emery, J., Veron, A., and Fourquet, J.L.: A distribution of activation energies for the local and long-range ionic motion is consistent with the disordered structure of the perovskite Li3x La2/3−x TiO3 . Solid State Ion. 109, 2534 (1998).CrossRefGoogle Scholar
12. Ma, C., Chen, K., Liang, C., Nan, C.-W., Ishikawa, R., More, K., and Chi, M.: Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ. Sci. 7, 1638 (2014).Google Scholar
13. Yu, H., So, Y.G., Kuwabara, A., Tochigi, E., Shibata, N., Kudo, T., Zhou, H., and Ikuhara, Y.: Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide. Nano Lett. 16, 29072915 (2016).Google Scholar
14. Ma, C., Cheng, Y., Chen, K., Li, J., Sumpter, B.G., Nan, C.-W., More, K.L., Dudney, N.J., and Chi, M.: Mesoscopic framework enables facile ionic transport in solid electrolytes for Li batteries. Adv. Energy Mater. 6, 1600053 (2016).CrossRefGoogle Scholar
15. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).Google Scholar
16. Stukowski, A.: Ovito Open Visualization Tool. http://ovito.org/ (2015).Google Scholar
17. Kresse, G. and Furthmller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 1550 (1996).Google Scholar
18. Kresse, G. and Furthmller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 1116911186 (1996).Google Scholar
19. Kresse, G. and Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 251269 (1994).Google Scholar
20. Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 17581775 (1999).Google Scholar
21. Henkelman, G. and Jónsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 99789985 (2000).Google Scholar
22. Henkelman, G., Uberuaga, B.P., and Jónsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 99019904 (2000).Google Scholar
23. Sheppard, D. and Henkelman, G.: Paths to which the nudged elastic band converges. J. Comput. Chem. 32, 17691771 (2011).Google Scholar
24. Sheppard, D., Terrell, R., and Henkelman, G.: Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008).Google Scholar
25. Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D.D., and Henkelman, G.: A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 074103 (2012).Google Scholar
26. Blchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 1795317979 (1994).CrossRefGoogle Scholar
27. Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38653868 (1996).Google Scholar
28. Perdew, J.P., Burke, K., and Ernzerhof, M.: Errata generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997).Google Scholar
29. Pulay, P.: Convergence acceleration of iterative sequences. The case of SCF iteration. Chem. Phys. Lett. 73, 393398 (1980).CrossRefGoogle Scholar
30. Moriwake, H., Gao, X., and Kuwabara, A.: Domain boundaries and their influence on Li migration in solid-state electrolyte (La, Li) TiO3 . J. Power Sources 276, 203207 (2015).Google Scholar
Supplementary material: File

Alexander supplementary material

Alexander supplementary material 1

Download Alexander supplementary material(File)
File 155.1 KB