Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T15:05:56.491Z Has data issue: false hasContentIssue false

Integration of Ultrananocrystalline Diamond (UNCD)-Coatings on Chemical-Mechanical Surface Nano-structured (CMNS) Titanium-Based Dental Implants

Published online by Cambridge University Press:  26 August 2020

Debashish Sur
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611.
Pablo Tirado
Affiliation:
Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Sonora, México, 83000
Jesus Alcantar
Affiliation:
Microtechnologies Division, Center for Engineering and Industrial Development, Queretaro, Mexico.
Orlando Auciello
Affiliation:
Departments of Materials Science and Engineering and Bioengineering, University of Texas at Dallas, Richardson, TX, 75080
G. Bahar Basim
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611.
Get access

Abstract

This paper focuses on describing the integration of ultrananocrystalline diamond (UNCD) coating on pure titanium-based dental implants (DIs) integrated with the surface pre-treatment by chemical-mechanical nano-structuring (CMNS) process. The combination of the UNCD coating with the CMNS metal surface treatment provides a transformational process to produce a new generation of metallic implants. CMNS promotes a uniform and dense titanium oxide interface and UNCD enables higher resistance to chemical-induced corrosion by oral fluids and enhanced bone attachment due to superior bone cell growth on C atoms (element of life in human DNA and cell). The main focus of the presented research is to establish the preliminary studies on the integration of the UNCD coating process on CMNS treated dental implants to promote corrosion resistance and biocompatibility. It is demonstrated that the CMNS process in the presence of an oxidizer (1M to be optimal) induces a tailored interface to promote UNCD coating capability through effective interface passivation leading to uniform surface coverage. The final implant product is observed to have improved corrosion potential and enhanced hydrophobicity indicating better biocompatibility providing the basis for a new generation of superior DIs. The findings can further be extended to the hip, knee, and other orthopedic metallic implants, which require major performance improvements, particularly in reducing or eliminating in-vivo body fluid-induced chemical corrosion.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ozdemir, Z., Ozdemir, A., and Basim, G. B., “Application of chemical mechanical polishing process on titanium based implants,” Mater. Sci. Eng. C, 2016, doi: 10.1016/j.msec. 2016.06.002.CrossRefGoogle ScholarPubMed
Ozdemir, Z., Basim, G.B.Effect of Chemical Mechanical Polishing on Surface Nature of Titanium Implants FT-IR and Wettability Data of Titanium Implants Surface After Chemical Mechanical Polishing Implementation”, Data in Brief, vol. 10, P 20-25, 2017, doi: 10.1016/j.dib.2016.11.065.CrossRefGoogle ScholarPubMed
Auciello, O., Gurman, P., Guglielmotti, M. B., Olmedo, D. G., Berra, A., and Saravia, M. J., “Biocompatible ultrananocrystalline diamond coatings for implantable medical devices,” MRS Bull., vol. 39, 621, 2014, doi: 10.1557/mrs.2014.134.CrossRefGoogle Scholar
Xiao, X., Wang, J., Carlisle, J.A., Mech, B., Greenberg, R., Freda, R., Humayun, M.S., Weiland, J., Auciello, O., “In vitro and in vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips,” J. Biomed. Mater., vol. 77B (2), 273, 2006.CrossRefGoogle Scholar
Auciello, O., “Novel biocompatible ultrananocrystalline diamond coating technology for a new generation of medical implants, devices, and scaffolds for developmental biology”, Biomaterials and Medical Applications Journal, vol. 1 (1), 1000103, 2017.Google Scholar
Auciello, O. and Sumant, A. V., “Status review of the science and technology of ultranano-crystalline diamond (UNCDTM) films and application to multifunctional devices,” Diamond and Related Material s. vol. 19, 699. 2010, doi: 10.1016/j.diamond.2010.03.015.CrossRefGoogle Scholar
Shi, B., Jin, Q., Chen, L., Woods, A. S., Schultz, A. J., and Auciello, O., “Cell growth on different types of ultrananocrystalline diamond thin films”, Special Issue Coating Deposition and Surface Functionalization of Implants for Biomedical Applications, J. Funct. Biomater, vol. 3(3), 588, 2012.CrossRefGoogle ScholarPubMed
Shi, E., Jin, Q., Chen, L., and Auciello, O., “Fundamentals of ultrananocrystalline diamond (UNCD) thin films as biomaterials for developmental biology: embryonic fibroblasts growth on the surface of (UNCD) films”, Diamond and Related Materials, vol. 18, issue 2, 596, 2008.CrossRefGoogle Scholar
Becker, W., Becker, B.E., Newman, M.G., and Nyman, S., “Clinical and microbiologic findings that may contribute to dental implant failure,” The International Journal of Oral & Maxillofacial Implants, vol. 5(1), 31, 1990.Google Scholar
Moy, P.K., Medina, D., Shetty, V., and Aghaloo, T.L., “Dental implant failure rates and associated risk factors,” The International Journal of Oral & Maxillofacial Implants, vol. 20(4), 569, 2005.Google Scholar
Olmedo, D.G., Cabrini, R.L., Duffó, G., Guglielmotti, M.B., ”Local effect of titanium corrosion: An experimental study in rats,” Int. J. Oral Maxillofac. Surg., vol. 37(11), 1037, 2008.CrossRefGoogle ScholarPubMed
Olmedo, D.G., Tasat, D., Evelson, P., Guglielmotti, M.B., and Cabrini, R.L., “Biological response of tissues with macrophagic activity to titanium dioxide,” J. Biomed. Mater. Res., Part A, vol. 84(4), 1087, 2008.CrossRefGoogle ScholarPubMed
Gittens, R.A., Olivares-Navarrete, R., Tannenbaum, R., Boyan, B.D., and Schwartz, Z., “Electrical implications of corrosion for osseointegration of titanium implants,” J. Dent. Res., vol. 90(12), 1389, 2011.Google Scholar
Rodriguez, D.C, Valderrama, P., Wilson, T.G. Jr, Palmer, K., Thomas, A., Sridhar, S, Adapalli, A., Burbano, M., and Wadhwani, C., “Titanium corrosion mechanism in the oral environment: A retrieval study,” Materials, vol. 6, 5258 (2013).CrossRefGoogle Scholar
Chaturvedi, T.P.. An overview of the corrosion aspect of dental implants (Titanium and its Alloys), Indian J. Dent. Res., vol. 20, 91, 2009.CrossRefGoogle Scholar
Tasat, D.R., Bruno, M. E., Domingo, M., Gurman, P., Auciello, O., Guglielmotti, M. B., and Olmedo, D. G., “Biokinetics and tissue response to ultrananocrystalline diamond nanoparticles employed as coating for biomedical devices,“ J. of Biomedical Materials: Applied Biomaterials, vol. 008, 1, 2016.Google Scholar
Chu, Y.-C., Tzeng, Y. and Auciello, O., “Microwave plasma enhanced chemical vapor deposition of nanoacrystalline diamond films by bias-enhanced nucleation and bias-enhanced growthJ. Appl. Phys., vol. 115 , 024308, 2014.CrossRefGoogle Scholar
Karagoz, A., Craciun, V., Basim, G.B., “Characterization of Nano-Scale Protective Oxide Films_ Application on Metal Chemical Mechanical Planarization”. ECS Journal of Solid State Science and Technology, vol. 4 (2) P1-P8, 2015.CrossRefGoogle Scholar
Chu, Y-C, Tu, C- H, Liu, C-p, Tzeng, Y. and Auciello, O, “Ultrananocrystalline diamond nano-iillars synthesized by microwave plasma bias-enhanced nucleation and bias-enhanced growth in hydrogen-diluted methane”, J. Appl. Phys., vol. 112, 124307, 2012.CrossRefGoogle Scholar
Naguib, N., Birrell, J., Elam, J., Carlisle, J.A., Auciello, O., “A Method to Grow Carbon Thin Films Consisting Entirely of Diamond Grains 3-5 nm in Size and High-Energy Grain Boundaries”, US Patent #7,128, 8893 (2006).Google Scholar
Birrell, J., Gerbi, J. E., Auciello, O., Gibson, J. M., Johnson, J., and Carlisle, J. A., “Interpretation of the Raman spectra of ultrananocrystalline diamond,” Diam. Relat. Mater., vol.14, 86, 2005, doi: 10.1016/j.diamond.2004.07.012.CrossRefGoogle Scholar
Williams, O. A. and Nesládek, M., “Growth and properties of nanocrystalline diamond films,” Physica Status Solidi (A) Applications and Materials Science. 2006, doi: 10.1002/pssa.200671406.CrossRefGoogle Scholar
Kuzmany, H., Pfeiffer, R., Saik, N., and Gunther, B., “The mystery of the 1140 cm−1 Raman line in nanocrystalline diamond films”, Carbon, vol. 42 (5-6), 911, 2004.CrossRefGoogle Scholar
Fuentes-Fernandez, E. M. A. et al. , “Synthesis and characterization of microcrystalline diamond to ultrananocrystalline diamond films via Hot Filament Chemical Vapor Deposition for scaling to large area applications,” Thin Solid Films, 2016, doi: 10.1016/j.tsf.2015.11.088.CrossRefGoogle Scholar
Lide, D. R., “CRC Handbook of Chemistry and Physics, Internet Version 2005,” CRC Press. Taylor Fr. Boca Rat. FL, 2005, doi: 10.1016/0165-9936(91)85111-4.Google Scholar
Martin, H. B., “Hydrogen and Oxygen Evolution on Boron-Doped Diamond Electrodes,” J. Electrochem. Soc., 1996, doi: 10.1149/1.1836901.CrossRefGoogle Scholar
Sowa, M. and Simka, W., “Electrochemical impedance and polarization corrosion studies of tantalum surface modified by DC Plasma electrolytic oxidation,” Materials (Basel)., 2018, doi: 10.3390/ma11040545.Google Scholar