Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T12:48:05.885Z Has data issue: false hasContentIssue false

Comparison and correlation of structural disorder caused by anion Frenkel in affecting ion conduction of La2Hf2O7 and La2Mo2O9 as high performance electrolytes in SOFCs

Published online by Cambridge University Press:  14 August 2017

Mingzi Sun
Affiliation:
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
Bolong Huang*
Affiliation:
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
Get access

Abstract

La2Hf2O7 and La2Mo2O9 as potential electrolytes for solid oxide fuel cells (SOFCs) have been investigated through first-principles calculations to understand the mechanism of ion motion. In La2Hf2O7, three unique types of positions that can form anion-Frenkel (a-Fr) pairs have been screened out and a reasonable continuous diffusion path constructed by these migration sites has also been suggested as the dominant cause of ion conduction. On the other side, excellent ion conductivity in La2Mo2O9 is more based on the short-range disorder induced by mobile structure. The thermodynamic properties comparison of La2Mo2O9 and La2Hf2O7 shows that the formation of a-Fr pairs in La2Mo2O9 will start at lower temperature because of higher degree of structural disorder and less constraints on oxygen ions.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Minh, N., Solid State Ionics 1-4(174), 271277. (2004).Google Scholar
Singhal, S., Solid State Ionics 1-4(135), 305313. (2000).Google Scholar
Stambouli, A. B. and Traversa, E., Renewable and Sustainable Energy Reviews 5(6), 433455. (2002).Google Scholar
Minh, N. Q., J. Am. Ceram. Soc. 3(76), 563588. (1993).CrossRefGoogle Scholar
Burggraaf, A., Vandijk, T. and Verkerk, M., Solid State Ionics 5), 519522. (1981).Google Scholar
Vandijk, M., Burggraaf, A., Cormack, A. and Catlow, C., Solid State Ionics 2(17), 159167. (1985).Google Scholar
W., P. and C., C.R.A., Solid State Ionics 3-4(112), 173183. (1998).Google Scholar
Minervini, L., Grimes, R. W. and Sickafus, K. E., J. Am. Ceram. Soc. 8(83), 18731878. (2004).Google Scholar
Hagiwara, T., Yamamura, H. and Nishino, H., IOP Conference Series: Materials Science and Engineering 13(18), 132003. (2011).Google Scholar
Huang, B., Gillen, R. and Robertson, J., The Journal of Physical Chemistry C 42(118), 2424824256. (2014).Google Scholar
Lehmann, H., Pitzer, D., Pracht, G., Vassen, R. and Stöver, D., J. Am. Ceram. Soc. 8(86), 13381344. (2003).Google Scholar
Eagleman, Y., Weber, M., Chaudhry, A. and Derenzo, S., J. Lumin. 11(132), 28892896. (2012).Google Scholar
Ji, Y., Jiang, D. and Shi, J., J. Mater. Res. 03(20), 567570. (2011).Google Scholar
Wei, F., Tu, H., Wang, Y., Yue, S. and Du, J., Journal of Physics: Conference Series 152), 012003. (2009).Google Scholar
Seguini, G., Spiga, S., Bonera, E., Fanciulli, M., Reyes Huamantinco, A., Först, C. J., Ashman, C. R., Blöchl, P. E., Dimoulas, A. and Mavrou, G., Appl. Phys. Lett. 20(88), 202903. (2006).Google Scholar
Lumpkin, G. R., Whittle, K. R., Rios, S., Smith, K. L. and Zaluzec, N. J., J. Phys.: Condens. Matter 47(16), 85578570. (2004).Google Scholar
Ewing, R. C., Weber, W. J. and Lian, J., J. Appl. Phys. 11(95), 59495971. (2004).Google Scholar
Yamamura, H., Solid State Ionics 3-4(158), 359365. (2003).Google Scholar
Aleshin, E. and Roy, R., J. Am. Ceram. Soc. 1(45), 1825. (1962).Google Scholar
Lacorre, P., Goutenoire, F., Bohnke, O., Retoux, R. and Laligant, Y., Nature 6780(404), 856858. (2000).Google Scholar
Goutenoire, F., Isnard, O. and Retoux, R., Chem. Mater. 9(12), 25752580. (2000).Google Scholar
Terki, R., Feraoun, H., Bertrand, G. and Aourag, H., J. Appl. Phys. 11(96), 64826487. (2004).CrossRefGoogle Scholar
Pruneda, J. M. and Artacho, E., Physical Review B 8(72), 2005).Google Scholar
Li, N., Xiao, H. Y., Zu, X. T., Wang, L. M., Ewing, R. C., Lian, J. and Gao, F., J. Appl. Phys. 6(102), 063704. (2007).Google Scholar
Panero, W. R., Stixrude, L. and Ewing, R. C., Physical Review B 5(70), 2004).Google Scholar
Evans, I. R., Howard, J. A. K. and Evans, J. S. O., Chem. Mater. 16(17), 40744077. (2005).Google Scholar
Lacorre, P., Selmi, A., Corbel, G. and Boulard, B., Inorg. Chem. 2(45), 627635. (2006).Google Scholar
Supplementary material: File

Sun and Huang supplementary material

Sun and Huang supplementary material

Download Sun and Huang supplementary material(File)
File 936.5 KB