Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T16:42:53.407Z Has data issue: false hasContentIssue false

Bariopharmacoalumite, a new mineral species from Cap Garonne, France and Mina Grande, Chile

Published online by Cambridge University Press:  05 July 2018

S. J. Mills*
Affiliation:
Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Rd, Vancouver, British Columbia, Canada V6T 1Z4
M. S. Rumsey
Affiliation:
Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, UK
G. Favreau
Affiliation:
421 Avenue Jean Monnet, 13090 Aix-en-Provence, France
J. Spratt
Affiliation:
Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, UK
M. Raudsepp
Affiliation:
Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Rd, Vancouver, British Columbia, Canada V6T 1Z4
M. Dini
Affiliation:
Escuela de Sociología, Universidad Central, Av. Franciscode Aguirre 0405, La Serena, Chile
*

Abstract

Bariopharmacoalumite, ideally Ba0.5Al4(AsO4)3(OH)4·4H2O, is a new mineral from Cap Garonne, France. It occurs in several places within the mine as colourless to pale yellow interpenetrating cubes up to 0.5 mm across. Bariopharmacoalumite is transparent to translucent, with a white streak, has an adamantine lustre and imperfect cleavage on {001}. The Vickers hardness is 234.35 and the Mohs harness is 3.5. Bariopharmacoalumite is isotropic, with n = 1.573 (upper estimate) [calculated from reflectance values at 589 nm using Fresnel Equations]. The empirical formula, based on 20 oxygen atoms, is: (Ba0.54Cu0.03K0.01)Σ0.58(Al3.99Fe0.02)Σ4.01(AsO4)3.00(OH)3.85O0.15·4H2O and the calculated density (on the basis of the empirical formula and single-crystal unit cell) is 2.580 g/cm3. The four strongest lines in the X-ray powder diffraction pattern are [dobs(Å), Iobs,(hkl)]: 7.759, 100, (001); 5.485, 27, (011); 3.878, 27, (002); 4.454, 18, (011). Bariopharmacoalumite from Cap Garonne is cubic, space group P4̄3m with a = 7.742(4) Å, V = 464.2(4) Å3 and Z = 1. The crystal structure was solved by direct methods and refined to R1 = 0.0705 for 215 reflections with I > 4σ(I) and is consistent with members of the pharmacosiderite supergroup. Data are also presented from zoned bariopharmacoalumite–bariopharmacosiderite crystals found at the Mina Grande mine, Chile.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 9007, USA

References

Benitez, F. (1949) Mina Grande. Sernageomin, Santiago de Chile, 1–2.Google Scholar
Bruker, (2003) SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Buerger, M.J., Dollase, W.A. and Garaycochea-Wittke, I. (1967) The structure and composition of the mineral pharmacosiderite. Zeitschrift für Kristallographie, 125, 92108.CrossRefGoogle Scholar
Chiappero, P.-J. (1993) Les arséniates de cuivre naturels: systématique et approche des conditions de genèse par les synthèses. Application au gisement plumbocuprifère de Cap Garonne, Var (France). PhD thesis, Université d’Orléans, France.Google Scholar
Domeyko, I. (1848) Sur le plomb vanadaté et le vanadate double de plomb et de cuivre du Chili. Annales de mines y de recueil de memoires sur l’exploitation de mines et sur le sciences et les arts qui s’y rapportant, 14, 145149.Google Scholar
Guillemin, C. (1952) Etude minéralogique et métallogénique du gîte plumbocuprifère du Cap Garonne (Var). Bulletin de la Société Française de Minéralogie et de Cristallographie, 75, 1159.CrossRefGoogle Scholar
Hager, S.L., Leverett, P., Williams, P.A., Mills, S.J., Hibbs, D.E., Raudsepp, M., Kampf, A.R. and Birch, W.D. (2010) The single-crystal X-ray structures of bariopharmacosiderite-C, bariopharmacosiderite-Q and natropharmacosiderite. The Canadian Mineralogist, 48, 14771485.CrossRefGoogle Scholar
Laugier, J. and Bochu, B. (2004) Chekcell: Graphical powder indexing cell and space group assignment software: http://www.ccp14.ac.uk/tutorial/lmgp/. Google Scholar
Mills, S.J., Hager, S.L., Leverett, P., Williams, P.A. and Raudsepp, M. (2010a) The crystal structure of H3O+ - exchanged pharmacosiderite. Mineralogical Magazine, 74, 487492.CrossRefGoogle Scholar
Mills, S.J., Kampf, A.R., Williams, P.A., Leverett, P., Poirier, G., Raudsepp, M. and Francis, C.A. (2010b) Hydroniumpharmacosiderite, a new member of the pharmacosiderite supergroup from Cornwall, UK: structure and description. Mineralogical Magazine, 74, 863869.CrossRefGoogle Scholar
Rumsey, M.S., Mills, S.J. and Spratt, J. (2010) Natropharmacoalumite, Na Al4 [(OH)4 (AsO4)3]·4H2O, a new mineral of the pharmacosiderite supergroup and the renaming of aluminopharmacosiderite to pharmacoalumite. Mineralogical Magazine, 74, 929936.CrossRefGoogle Scholar
Sarp, H. and Chiappero, P.-J. (1992) Deloryite, Cu4(UO2)(MoO4)2(OH)6, a new mineral from the Cap Garonne mine near Le Pradet, Var, France. Neues Jahrbuch für M ineralogie, Monatshefte, 58–64.Google Scholar
Sarp, H., Chiappero, P.-J. and Favreau, G. (1994) Barium-zinc alumopharmacosiderite de la mine de Cap Garonne (Var, France). Archives des Sciences de Genève, 47, 4550.Google Scholar
Sheldrick, G. M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.CrossRefGoogle Scholar
Walenta, K. (1966) Beiträge zur Kenntnis seltener Arsenatminerale unter besonderer Berücksichtigung von Vorkommen des Schwarzwalds. Tschermaks Mineralogische Petrogralogische Mitteilungen, 11, 121164.CrossRefGoogle Scholar
Wilmot, A.H. (1960) Report on the Talcuna group. Sernageomin, Santiago de Chile, pp. 6–10.Google Scholar
Wittern, A. (2001) Mineralfundorte und ihre Minerale in Deutschland. E. Schweizerbart‘sche Verlagsbuchhandlung, Stuttgart, Germany, 286 pp.Google Scholar
Yakovenchuk, V.N., Nikolaev, A.P., Selivanova, E.A., Pakhomovsky, Y.A., Korchak, J.A., Spiridonova, D.V., Zalkind, O.A. and Krivovichev, S.V. (2009) Ivanyukite-Na-T, ivanyukite-Na-C, ivanyukite-K, and ivanyukite-Cu: New microporous titanosilicates from the Khibiny massif (Kola peninsula, Russia) and crystal structure of ivanyukite-Na-T. American Mineralogist, 94, 14501458.CrossRefGoogle Scholar
Zemann, J. (1947) Über die Struktur des Pharmakosiderits. Experientia, 3, 452.CrossRefGoogle Scholar
Zemann, J. (1948) Formel und Struktur des Pharmakosiderits. Tschermaks Mineralogische und Petrographische Mitteilungen, 1, 113.CrossRefGoogle Scholar