Article contents
Descent on fibrations over P1k revisited
Published online by Cambridge University Press: 01 May 2000
Abstract
Soient k un corps de nombres et f: X → P1k un k-morphisme surjectif de k-variétés projectives lisses, à fibre générique géométriquement intègre. Supposons que les fibres de f au-dessus d'un sous-ensemble Hilbertien de P1(k) satisfont le principe de Hasse (resp. le principe de Hasse et l'approximation faible). Supposons que toutes les fibres géométriques de f ont au moins une composante de multiplicité un. Le rang de f est la somme des degrés des points fermés P dont la fibre XP = f−1(P) ne possède pas de composante de multiplicité un géométriquement intègre. Supposons le rang au plus égal à 2. Alors l'obstruction de Brauer–Manin au principe de Hasse (resp. à l'approximation faible) sur X est la seule. Dans des articles antérieurs nous n'avions obtenu ce résultat que sous des hypothèses plus fortes sur la nature des fibres. Le présent énoncé, obtenu grâce à une descente sur des variétés ouvertes, permet d'étudier des variétés données par des équations affines simples, sans calcul explicite d'un modè le projectif et lisse.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 128 , Issue 3 , May 2000 , pp. 383 - 393
- Copyright
- The Cambridge Philosophical Society 2000
- 15
- Cited by