No CrossRef data available.
Grothendieck groups of quadratic forms and G-equivalence of fields
Published online by Cambridge University Press: 24 October 2008
Extract
Let k be a field of characteristic other than 2 and let g(k) denote the multiplicative group k* of the field k modulo squares, i.e. g(k) = k*/k*2. This is an abelian group of exponent 2 and its order, if finite, is a power of 2. We denote by G(k) the Grothendieck group of quadratic forms over k.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 73 , Issue 1 , January 1973 , pp. 29 - 36
- Copyright
- Copyright © Cambridge Philosophical Society 1973
References
REFERENCES
(1)Gross, H. and Fischer, H. R.Non real fields k and infinite dimensional k-vectorspaces. Math. Ann. 159 (1965), 285–308.CrossRefGoogle Scholar
(3)Pfister, A.Multiplikative quadratische Formen. Arch. Math. (Basel) 16 (1965), 363–370.CrossRefGoogle Scholar
(4)Scharlau, W.Quadratic forms. Queen's Papers on Pure and Applied Mathematics No. 22. Kingston, Ont., 1969.Google Scholar
(5)Witt, E.Theorie der quadratischen Formen in beliebigen Körpern. J. Reine Angew. Math. 176 (1937), 31–44.CrossRefGoogle Scholar