Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T17:59:00.890Z Has data issue: false hasContentIssue false

Kummer surfaces and the computation of the Picard group

Published online by Cambridge University Press:  01 April 2012

Andreas-Stephan Elsenhans
Affiliation:
Mathematisches Institut, Universität Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany (email: Stephan.Elsenhans@uni-bayreuth.de)
Jörg Jahnel
Affiliation:
Department Mathematik, Universität Siegen, Walter-Flex-Str. 3, D-57068 Siegen, Germany (email: jahnel@mathematik.uni-siegen.de)

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We test R. van Luijk’s method for computing the Picard group of a K3 surface. The examples considered are the resolutions of Kummer quartics in ℙ3. Using the theory of abelian varieties, the Picard group may be computed directly in this case. Our experiments show that the upper bounds provided by van Luijk’s method are sharp when sufficiently many primes are used. In fact, there are a lot of primes that yield a value close to the exact one. However, for many but not all Kummer surfaces V of Picard rank 18, we have for a set of primes of density at least 1/2.

Type
Research Article
Copyright
Copyright © London Mathematical Society 2012

References

[1]Artin, M. and Swinnerton-Dyer, S. P., ‘The Shafarevich–Tate conjecture for pencils of elliptic curves on K3 surfaces’, Invent. Math. 20 (1973) 249266.CrossRefGoogle Scholar
[2]Beauville, A., Complex algebraic surfaces, London Mathematical Society Lecture Note Series 68 (Cambridge University Press, Cambridge, 1983).Google Scholar
[3]Cayley, A., ‘Sur la surface des ondes’, J. Math. Pures Appl. 11 (1846) 291296.Google Scholar
[4]Cayley, A., ‘Sur un cas particulier de la surface du quatrième ordre avec seize points singuliers’, J. Reine Angew. Math. 65 (1866) 284290.Google Scholar
[5]Elsenhans, A. -S. and Jahnel, J., ‘K3 surfaces of Picard rank one and degree two’, Algorithmic number theory (ANTS-VIII), Lecture Notes in Computer Science 5011 (Springer, Berlin, 2008) 212225.CrossRefGoogle Scholar
[6]Elsenhans, A.-S. and Jahnel, J., ‘K3 surfaces of Picard rank one which are double covers of the projective plane’, The higher-dimensional geometry over finite fields (IOS Press, Amsterdam, 2008) 6377.Google Scholar
[7]Elsenhans, A.-S. and Jahnel, J., ‘On Weil polynomials of K3 surfaces’, Algorithmic number theory (ANTS-IX), Lecture Notes in Computer Science 6197 (Springer, Berlin, 2010) 126141.CrossRefGoogle Scholar
[8]Elsenhans, A.-S. and Jahnel, J., ‘On the computation of the Picard group for K3 surfaces’, Math. Proc. Cambridge Philos. Soc. 151 (2011) 263270.CrossRefGoogle Scholar
[9]Elsenhans, A.-S. and Jahnel, J., ‘The Picard group of a K3 surface and its reduction modulo p’, Preprint, 2010, arXiv:1006.1972, Algebra Number Theory, to appear.CrossRefGoogle Scholar
[10]Elsenhans, A.-S. and Jahnel, J., ‘On the characteristic polynomials of the Frobenius on étale cohomology’, Preprint, 2011, arXiv:1106.3953.Google Scholar
[11]Fulton, W., Intersection theory (Springer, Berlin, 1984).CrossRefGoogle Scholar
[12]Griffiths, P. and Harris, J., Principles of algebraic geometry (Wiley-Interscience, New York, 1978).Google Scholar
[13]Grothendieck, A. and Dieudonné, J., ‘Étude locale des schémas et des morphismes de schémas (EGA IV)’, Publ. Math. Inst. Hautes Études Sci. 20(1964), 24(1965), 28(1966), 32(1967).CrossRefGoogle Scholar
[14]Hudson, R. W. H. T., Kummer’s quartic surface (Cambridge University Press, Cambridge, 1905).Google Scholar
[15]Huffman, W. C. and Pless, V., Fundamentals of error-correcting codes (Cambridge University Press, Cambridge, 2003).CrossRefGoogle Scholar
[16]Ishii, Y. and Nakayama, N., ‘Classification of normal quartic surfaces with irrational singularities’, J. Math. Soc. Japan 56 (2004) 941965.CrossRefGoogle Scholar
[17]Jessop, C. M., Quartic surfaces with singular points (Cambridge University Press, Cambridge, 1916).Google Scholar
[18]Kloosterman, R., ‘Elliptic K3 surfaces with geometric Mordell–Weil rank 15’, Canad. Math. Bull. 50 (2007) 215226.CrossRefGoogle Scholar
[19]Kummer, E. E., ‘Über die Flächen vierten Grades, mit sechzehn singulären Punkten’, Monatsberichte der Königlichen Preußischen Akademie der Wissenschaften zu Berlin 1864 (1865) 246260.Google Scholar
[20]Lipman, J., ‘Rational singularities, with applications to algebraic surfaces and unique factorization’, Publ. Math. Inst. Hautes Études Sci. 36 (1969) 195279.CrossRefGoogle Scholar
[21]van Luijk, R., ‘Rational points on K3 surfaces’, PhD Thesis, University of California, Berkeley, 2005.Google Scholar
[22]van Luijk, R., ‘K3 surfaces with Picard number one and infinitely many rational points’, Algebra Number Theory 1 (2007) 115.CrossRefGoogle Scholar
[23]Milne, J. S., ‘On a conjecture of Artin and Tate’, Ann. of Math. 102 (1975) 517533.CrossRefGoogle Scholar
[24]Milne, J. S., Étale cohomology (Princeton University Press, Princeton, 1980).Google Scholar
[25]Mumford, D., Abelian varieties (Oxford University Press, Oxford, 1970).Google Scholar
[26]Murty, V. K. and Patankar, V. M., ‘Splitting of abelian varieties’, Int. Math. Res. Not. IMRN 12 (2008) Art. ID rnn033.Google Scholar
[27]Nikulin, V. V., ‘Kummer surfaces’, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975) 278293 (Russian).Google Scholar
[28]Nygaard, N. O. and Ogus, A., ‘Tate’s conjecture for K3 surfaces of finite height’, Ann. of Math. (2) 122 (1985) 461507.CrossRefGoogle Scholar
[29]Rohn, K., Die Flächen vierter Ordnung hinsichtlich ihrer Knotenpunkte und ihrer Gestaltung: gekrönte Preisschrift (Leipzig: bei S. Hirzel, Leipzig, 1886).Google Scholar
[30]Tate, J., ‘On the conjectures of Birch and Swinnerton-Dyer and a geometric analog’, Séminaire Bourbaki 1964–1966, Vol. 9, Exp. No. 306 (Société Mathématique de France, Paris, 1995) 415440.Google Scholar
[31]Weber, H., ‘Ueber die Kummersche Fläche vierter Ordnung mit sechzehn Knotenpunkten und ihre Beziehung zu den Thetafunctionen mit zwei Veränderlichen’, J. Reine Angew. Math. 84 (1878) 332354.Google Scholar