Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T07:21:11.614Z Has data issue: false hasContentIssue false

Ultra-intense attosecond pulses emitted from laser wakefields in non-uniform plasmas

Published online by Cambridge University Press:  02 May 2013

Y. Liu
Affiliation:
Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
F.Y. Li
Affiliation:
Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
M. Zeng
Affiliation:
Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
M. Chen
Affiliation:
Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China Department of Mathematics, Institute of Natural Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai, China
Z.M. Sheng*
Affiliation:
Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China Department of Mathematics, Institute of Natural Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai, China
*
Address correspondence and reprint requests to: Zheng-Ming Sheng, Department of Physics, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China. E-mail: zmsheng@sjtu.edu.cn

Abstract

A scheme of generating ultra-intense attosecond pulses in ultra-relativistic laser interaction with under-dense plasmas is proposed. The attosecond pulse emission is caused by an oscillating transverse current sheet formed by an electron density spike composed of trapped electrons in the laser wakefield and the residual transverse momentum of electrons left behind the laser pulse when its front is strongly modulated. As soon as the attosecond pulse emerges, it tends to feed back to further enhance the transverse electron momentum and the transverse current. Consequently, the attosecond pulse is enhanced and developed into a few cycles later until the density spike is depleted out due to the pump laser depletion. To control the formation of the transverse current sheet, a non-uniform plasma slab with an up-ramp density profile in front of a uniform region is adopted, which enables one to obtain attosecond pulses with higher amplitudes than that in a uniform plasma slab.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baeva, T., Gordienko, S. & Pukhov, A. (2007). Relativistic plasma control for single attosecond pulse generation: Theory, simulations, and structure of the pulse. Laser Part. Beams 25, 339346.CrossRefGoogle Scholar
Bulanov, S., Naumova, N., Pegoraro, F. & Sakai, J. (1998). Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E 58, R5257.CrossRefGoogle Scholar
Bulanov, S.V., Esirkepov, T. & Tajima, T. (2003). Light intensification towards the schwinger limit. Phys. Rev. Lett. 91, 085001.CrossRefGoogle ScholarPubMed
Chen, M., Sheng, Z.M., Zheng, J., Yanyun, M.A. & Zhang, J. (2008). Development and application of multi–dimensional particle-in-cell codes for investigation of laser plasma interactions. Chin. J. Comput. Phys. 25, 43.Google Scholar
Corkum, P.B. & Krausz, F. (2007). Attosecond science. Nat. Phys. 3, 381.CrossRefGoogle Scholar
Decker, C.D., Mori, W.B., Tzeng, K.C. & Katsouleas, T. (1996). Evolution of ultra-intense, short-pulse lasers in underdense plasmas. Phys. Plasmas 3, 2047.CrossRefGoogle Scholar
Dromey, B., Rykovanov, S.G., Adams, D., Horlein, R., Nomura, Y., Carroll, D.C., Foster, P.S., Kar, S., Markey, K., McKenna, P., Neely, D., Geissler, M., Tsakiris, G.D. & Zepf, M. (2009). Tunable enhancement of high harmonic emission from laser solid interactions. Phys. Rev. Lett. 102, 225002.CrossRefGoogle ScholarPubMed
Fonseca, R.A., Silva, L.O., Tsung, F.S., Decyk, V.K., Lu, W., Ren, C., Mori, W.B., Deng, S., Lee, S., Katsouleas, T. & Adam, J.C. (2002). Osiris: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In Lecture notes in computer science Sloot, P., Tan, C.J.K., Dongarra, J.J. and Hoekstra, A.G., Eds.). New York: Springer, Vol. 2331, pp. 342351.Google Scholar
Hergott, J.F., Kovacev, M., Merdji, H., Hubert, C., Mairesse, Y., Jean, E., Breger, P., Agostini, P., Carre, B. & Salieres, P. (2002). Extreme-ultraviolet high-order harmonic pulses in the microjoule range. Phys. Rev. A 66, 021801.CrossRefGoogle Scholar
Kando, M., Fukuda, Y., Pirozhkov, A.S., Ma, J., Daito, I., Chen, L.M., Esirkepov, T.Z., Ogura, K., Homma, T., Hayashi, Y., Kotaki, H., Sagisaka, A., Mori, M., Koga, J.K., Daido, H., Bulanov, S.V., Kimura, T., Kato, Y. & Tajima, T. (2007). Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield. Phys. Rev. Lett. 99, 135001.CrossRefGoogle Scholar
Li, F.Y., Sheng, Z.M., Liu, Y., Meyer-Ter-Vehn, J., Mori, W.B., Lu, W. & Zhang, J. (2013). Dense attosecond electron sheets from laser wakefields using an up-ramp density transition. Phys. Rev. Lett. 110, 135002.CrossRefGoogle Scholar
Liu, Y., Sheng, Z.M., Zheng, J., Li, F.Y., Xu, X.L., Lu, W., Mori, W.B., Liu, C.S. & Zhang, J. (2012). Ultrafast xuv emission from laser wakefields in underdense plasma. New J. Phys. 14, 083031.CrossRefGoogle Scholar
Meyer-ter-Vehn, J. & Wu, H.C. (2009). Coherent Thomson backscattering from laser-driven relativistic ultra-thin electron layers. Eur. Phys. J. D. 55, 433441.CrossRefGoogle Scholar
Midorikawa, K. (2011). High-order harmonic generation and attosecond science. Jpn. J. Appl. Phys. 50, 090001.CrossRefGoogle Scholar
Mourou, G.A., Labaune, C.L., Dunne, M., Naumova, N. & Tikhonchuk, V.T. (2007). Relativistic laser-matter interaction: From attosecond pulse generation to fast ignition. Plasma Phys. Contr. Fusion 49, B667B675.CrossRefGoogle Scholar
Nabekawa, Y., Shimizu, T., Furukawa, Y., Takahashi, E.J. & Midorikawa, K. (2009). Interferometry of attosecond pulse trains in the extreme ultraviolet wavelength region. Phys. Rev. Lett. 102, 213904.CrossRefGoogle ScholarPubMed
Naumova, N.M., Nees, J.A., Sokolov, I.V., Hou, B. & Mourou, G.A. (2004). Relativistic generation of isolated attosecond pulses in a lambda(3) focal volume. Phys. Rev. Lett. 92, 063902.Google Scholar
Quere, F., Thaury, C., Monot, P., Dobosz, S., Martin, P., Geindre, J.P. & Audebert, P. (2006). Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004.CrossRefGoogle ScholarPubMed
Roso, L., Plaja, L., Rzazewski, K. & von der Linde, D. (2000). Beyond the moving mirror model: Attosecond pulses from a relativistically moving plasma. Laser Part. Beams 18, 467475.CrossRefGoogle Scholar
Salieres, P., Huillier, A.L. & Lewenstein, M. (1995). Coherence control of high-order harmonics. Phys. Rev. Lett. 74, 3776.CrossRefGoogle ScholarPubMed
Sheng, Z.M., Sentoku, Y., Mima, K., Zhang, J., Yu, W. & Meyer-ter-Vehn, J. (2000). Angular distributions of fast electrons, ions, and bremsstrahlung X/gamma-rays in intense laser interaction with solid targets. Phys. Rev. Lett. 85, 5340.CrossRefGoogle ScholarPubMed
Takahashi, E.J., Nabekawa, Y. & Midorikawa, K. (2004). Low-divergence coherent soft x-ray source at 13 nm by high-order harmonics. Appl. Phys. Lett. 84, 4.CrossRefGoogle Scholar
Tsakiris, G.D., Eidmann, K., Meyer-ter-Vehn, J. & Krausz, F. (2006). Route to intense single attosecond pulses. New J. Phys. 8, 19.CrossRefGoogle Scholar
Von der Linde, D., Sokolowski-Tinten, K., Blome, C., Dietrich, C., Zhou, P., Tarasevitch, A., Cavalleri, A., Siders, C.W., Barty, C.P.J., Squier, J., Wilson, K.R., Uschmann, I. & Forster, E. (2001). Generation and application of ultrashort x-ray pulses. Laser Part. Beams 19, 1522.CrossRefGoogle Scholar
Wang, W.M., Sheng, Z.M., Norreys, P.A.Sherlock, M., Trines, R., Robinson, A.P.L., Li, Y.T., Hao, B., Zhang, J. (2010). Electron energy deposition to the fusion target core for fast ignition. J. Phys.: Conf. Ser. 244, 022070.Google Scholar
Wu, H.C., Meyer-ter-Vehn, J., Fernandez, J. & Hegelich, B.M. (2010). Uniform laser-driven relativistic electron layer for coherent thomson scattering. Phys. Rev. Lett. 104, 234801.CrossRefGoogle ScholarPubMed
Zheng, J., Sheng, Z.M., Zhang, J., Chen, M. & Ma, Y.Y. (2006). Effects of laser intensities and target shapes on attosecond pulse generation from irradiated solid surfaces. Chin. Phys. Lett. 23, 377380.Google Scholar