Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T23:13:23.940Z Has data issue: false hasContentIssue false

Laser wakefield acceleration of electrons from a density-modulated plasma

Published online by Cambridge University Press:  29 August 2014

D.N. Gupta*
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi, India
K. Gopal
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi, India
I.H. Nam
Affiliation:
Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, Korea
V.V. Kulagin
Affiliation:
Sternberg Astronomical Institute of Moscow State University, Moscow, Russia
H. Suk
Affiliation:
Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, Korea
*
Address correspondence and reprint requests to: D.N. Gupta, Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India. E-mail: dngupta@physics.du.ac.in

Abstract

This research reports the increased electron energy gain from laser wakefield acceleration in density-modulated plasma with an external magnetic field. Periodic plasma density- modulation can excite higher harmonics of different phase velocities of fundamental wakefield that can assist in improving the self-trapping of pre-accelerated electrons to accelerate them for higher energy. Furthermore, the applied magnetic field assisted self-injection can also contribute in electron energy enhancement during the acceleration. The physical mechanism is described with a theoretical formulation for this scheme. Results of two-dimensional particle-in-cell simulations are reported to understand the proposed idea.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Darrow, C., Umstadter, D., Katsouleas, T., Mori, W.B., Clayton, C.E. & Joshi, C. (1986). Saturation of beat-excited plasma waves by electrostatic mode coupling. Phys. Rev. Lett. 56, 26292632.CrossRefGoogle ScholarPubMed
Darrow, C., Mori, W.B., Katsouleas, T., Joshi, C., Umstadter, D. & Clayton, C.E. (1987). Electrostatic mode coupling of beat-excited electron plasma waves. IEEE Trans. Plasma Sci. 15, 107130.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.CrossRefGoogle Scholar
Esirkepov, T., Bulanov, S.V., Yamagiwa, M.V. & Tajima, T. (2006). Electron, positron, and photon wakefield acceleration: trapping, wake overtaking, and ponderomotive acceleration. Phys. Rev. Lett. 96, 014803.CrossRefGoogle ScholarPubMed
Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y. & Malka, V. (2006). Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737739.CrossRefGoogle ScholarPubMed
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.P., Burgy, F. & Malka, V. (2004). A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.CrossRefGoogle ScholarPubMed
Fritzler, S., Lefebvre, E., Malka, V., Burgy, F., Dangor, A.E., Krushelnick, K., Mangles, S.P.D., Najmudin, Z., Rousseau, J.P. & Walton, B. (2004). Emittance measurements of a laser-wakefield-accelerated electron beam. Phys. Rev. Lett. 92, 165006.CrossRefGoogle ScholarPubMed
Geddes, C.G.R., Toth, C., Tilborg, J.V., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538541.CrossRefGoogle ScholarPubMed
Gahn, C., Tsakiris, G.D., Pukhov, A., Mayer-Ter-Vehn, A., Pretzler, G., Thirolf, P., Habs, D. & Wite, K.J. (1999). Multi-Mev electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83, 47724775.CrossRefGoogle Scholar
Gibbon, P. (2005). Short Pulse Laser Interaction with Matter: An Introduction. London: Imperial College Press.CrossRefGoogle Scholar
Gorbunov, L., Mora, P. & Antonsen, T.M. Jr. (1996). Magnetic field of a plasma wake driven by a laser pulse. Phys. Rev. Lett. 76, 24952498.CrossRefGoogle ScholarPubMed
Gupta, D.N. & Suk, H. (2007). Energetic electron beam generation by laser-plasma interaction and its application for neutron production. J. Appl. Phys. 101, 114908.CrossRefGoogle Scholar
Gupta, D.N., Nam, I.H. & Suk, H. (2011). Laser-driven plasma beat-wave propagation in a density-modulated plasma. Phys. Rev. E 84, 056403.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Rosmej, O.N., Spiller, P., Tahir, N. A., Weyrich, K., Dafni, T., Kuster, M., Ni, P., Roth, M., Udrea, S. & Varentsov, D. (2007). Particle accelerator physics and technology for high energy density physics research. Eur. Phys. J: D 44, 293300.Google Scholar
Hur, M.S., Gupta, D.N. & Suk, H. (2008). Enhanced electron trapping by a static longitudinal magnetic field in laser wakefield acceleration. Phys. Lett. A 372, 26842687.CrossRefGoogle Scholar
Kaw, P.K., Lin, A.T. & Dawson, J.M. (1973). Quasiresonant mode coupling of electron plasma waves. Phys. Fluids 16, 19671975.CrossRefGoogle Scholar
Kar, S., Markey, K., Simpson, P.T., Bellei, C., Green, J., Nagel, S.R., Kneip, S., Carroll, D.C., Dromey, B., Willingale, L., Clark, E.L., Mckenna, P., Najmudin, Z., Krushelnick, K., Norreys, P., Clarke, R.J., Neely, D., Borghesi, M. & Zepf, M. (2008). Dynamic control of laser-produced proton beams. Phys. Rev. Lett. 100, 105004.CrossRefGoogle ScholarPubMed
Katsouleas, T. & Dawson, J.M. (1983). Unlimited electron acceleration in laser-driven plasma waves. Phys. Rev. Lett. 51, 392395.CrossRefGoogle Scholar
Katsouleas, T. & Bingham, R. (1996). Special issue on second generation of plasma accelerators. IEEE Trans. Plasma Sci. 24, 249251.CrossRefGoogle Scholar
Modena, A., Dangor, A., Najmudin, Z., Clayton, C., Marsh, K., Joshi, C., Malka, V., Darrow, C., Neely, D. & Walsh, F. (1995). Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606608.CrossRefGoogle Scholar
Sandhu, A.S., Kumar, G.R., Sengupta, S., Das, A. & Kaw, P.K. (2005). Laser-pulse-induced second-harmonic and hard x-ray emission: role of plasma-wave breaking Phys. Rev. Lett. 95, 025005.CrossRefGoogle ScholarPubMed
Suk, H., Barov, N., Rosenzweig, J.B. & Esarey, E. (2001). Plasma electron trapping and acceleration in a plasma wake field using a density transition. Phys. Rev. Lett. 86, 10111014.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Vieira, J., Martins, S.F., Pathak, V.B., Fonseca, R.A., Mori, W.B. & Silva, L.O. (2011). Magnetic control of particle injection in plasma based accelerators. Phys. Rev. Lett. 106, 225001.CrossRefGoogle ScholarPubMed
Wilks, S.C, Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.CrossRefGoogle ScholarPubMed