Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T19:35:28.116Z Has data issue: false hasContentIssue false

Geological differentiation explains diversity and composition of fish communities in upland streams in the southern Amazon of Colombia

Published online by Cambridge University Press:  01 September 2008

Fernando Arbeláez
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands Programa Inventarios de Biodiversidad, Instituto Alexander von Humboldt, Villa de Leyva, Boyacá, Colombia
Joost F. Duivenvoorden*
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands Programa Inventarios de Biodiversidad, Instituto Alexander von Humboldt, Villa de Leyva, Boyacá, Colombia
Javier A. Maldonado-Ocampo
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands Programa Inventarios de Biodiversidad, Instituto Alexander von Humboldt, Villa de Leyva, Boyacá, Colombia
*
1Corresponding author, at IBED. Email: j.f.duivenvoorden@.uva.nl

Abstract:

Fish biomass, species richness and composition were compared between upland streams draining two contrasting geological units (Pebas and Tsa) in Colombian Amazonia. Because Pebas sediments reportedly show higher levels of base concentrations than Tsa sediments, we expected that the fish communities from the Pebas streams would show highest biomass and species richness, and that the species composition would vary between the two upland systems. Eight forest streams were sampled in four locations, applying four daily sampling events. Tsa soil samples were comparatively sandy, whereas Pebas soil samples tended to be siltier, with higher levels of exchangeable acidity, Ca, Mg and total bases. Conductivity, concentrations of bases (Ca, Mg, K and Na), bicarbonates and temperature showed higher values in Pebas stream-water samples than in Tsa. In total, 7696 fish individuals were captured, belonging to eight orders, 28 families and 122 species. Pebas streams had 1.3 times more species than Tsa streams, and more than twice the total biomass. Species richness and biomass were highly correlated with conductivity and water concentrations of Mg and Na, and biomass alone with dissolved oxygen. Fish species composition differed significantly between the geological units. Species turnover was not related to distance between sampling locations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ARBELÁEZ, F., GÁLVIS, G., MOJICA, J. I. & DUQUE, S. R. 2004. Composition and richnes of the ichthyofauna in a terra firme forest stream of the Colombian Amazonia. Amazoniana 18:109123.Google Scholar
BÜHRNHEIM, C. M. & COX-FERNANDES, C. 2001. Low seasonal variation of fish assemblages in Amazonian rain forest streams. Ichthyological Exploration of Freshwaters 12:6578.Google Scholar
BÜHRNHEIM, C. M. & COX-FERNANDES, C. 2003. Structure of fish assemblages in Amazonian rain-forest streams: effects of habitats and locality. Copeia 2:255262.CrossRefGoogle Scholar
CHAO, A. 2005. Species richness estimation. Pp. 79097916 in Balakrishnan, N., Read, C. B. & Vidakovic, B. (eds.). Encyclopedia of statistical sciences. Wiley, New York.Google Scholar
CRAMPTON, W. G. R. 1999. Os peixes da Reserva Mamirauá: diversidade e história natural na planície alagável da Amazônia. Pp. 1036 in Queiroz, H. L. & Crampton, W. G. R. (eds.). Estratégias para manejo de recursos pesqueiros em Mamirauá. Sociedade Civil Mamirauá/CNPq, Brasília.Google Scholar
DOS ANJOS, M. B. & ZUANON, J. 2007. Sampling effort and fish species richness in small terra firme forest streams of central Amazonia, Brazil. Neotropical Ichthyology 5:4552.CrossRefGoogle Scholar
DUIVENVOORDEN, J. F. & LIPS, J. M. 1993. Ecología del paisaje del Medio Caquetá: memoria explicativa de los mapas. Tropenbos-Colombia, Bogotá. 301 pp.Google Scholar
DUIVENVOORDEN, J. F. & LIPS, J. M. 1995. A land-ecological study of soils, vegetation, and plant diversity in Colombian Amazonia. The Tropenbos Foundation, Wageningen. 438 pp.Google Scholar
GALACATOS, K., STEWART, D. J. & IBARRA, M. 1996. Fish community patterns of lagoons and associated tributaries in the Ecuadorian Amazon. Copeia 4:875894.CrossRefGoogle Scholar
GALVIS, G., MOJICA, J. I., DUQUE, S. R., CASTELLANOS, C., SÁNCHEZ-DUARTE, P., ARCE, M., GUTIÉRREZ, Á., JIMÉNEZ, L. F., SANTOS, M., VEJARANO, S., ARBELÁEZ, F., PRIETO, E. & LEIVA, M. 2006. Peces del medio Amazonas – Región de Leticia. Conservación Internacional, Bogotá D. C. 548 pp.Google Scholar
GOULDING, M., LEAL-CARVALHO, M. & FERREIRA, E. G. 1988. Rio Negro, rich life in poor water: Amazonian diversity and foodchain ecology as seen through fish communities. SPB Academic Publishing, The Hague. 200 pp.Google Scholar
HENDERSON, P. A. & CRAMPTON, W. G. R. 1997. A comparison of fish diversity and density between nutrient-rich and nutrient-poor lakes in the Upper Amazon. Journal of Tropical Ecology 13:175198.CrossRefGoogle Scholar
HENDERSON, P. A. & WALKER, I. 1986. On the leaf-litter community of the Amazonian blackwater stream Tarumazinho. Journal of Tropical Ecology 2:117.CrossRefGoogle Scholar
HENDERSON, P. A. & WALKER, I. 1990. Spatial organization and population density of the fish community of the litter banks within a central Amazonian blackwater stream. Journal of Fish Biology 37:401411.CrossRefGoogle Scholar
HOORN, C. 1994. An environmental reconstruction of the paleo-Amazon River system (Middle-Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology 112:187238.CrossRefGoogle Scholar
HOORN, C. 2006. Mangrove forests and marine incursions in Neogene Amazonia (Lower Apaporis River, Colombia). Palaios 21:197209.CrossRefGoogle Scholar
IBARRA, M. & STEWART, D. J. 1989. Longitudinal zonation of sandy beach fishes in the Napo River Basin, Eastern Ecuador. Copeia 2:364381.CrossRefGoogle Scholar
IGAC 1990. Métodos analíticos del laboratorio de suelos. Instituto Geográfico “Agustín Codazzi”, Bogotá. 502 pp.Google Scholar
JUNK, W. J. & SOARES, M. G. M. 2001. Freshwater fish habitats in Amazonia: state of knowledge, management, and protection. Aquatic Ecosystem Health & Management 4:437451.CrossRefGoogle Scholar
JUNK, W. J., SOARES, M. G. M. & BALEY, P. B. 2007. Freshwater fishes of the Amazon River basin: their biodiversity, fisheries, and habitats. Aquatic Ecosystem Health and Management 10:153173.CrossRefGoogle Scholar
KALLIOLA, R. & FLORES PAITAN, S. (eds.) 1998. Geoecología y desarollo Amazónico: estudio integrado en la zona de Iquitos, Perú. Turun Yliopisto, Turku. 544 pp.Google Scholar
KNÖPPEL, H. A. 1970. Food of central Amazonian fishes: contribution to the nutrient-ecology of Amazonian rainforest-streams. Amazoniana 2:257352.Google Scholar
LIPS, J. M. & DUIVENVOORDEN, J. F. 1996. Fine litter input to terrestrial humus forms in Colombian Amazonia. Oecologia 108:138150.CrossRefGoogle ScholarPubMed
LOWE-MCCONNELL, R. H. 1987. Ecological studies in tropical fish communities. Cambridge University Press, Cambridge. 382 pp.CrossRefGoogle Scholar
MENDONÇA, F. P., MAGNUSSON, W. E. & ZUANON, J. 2005. Relationships between habitat characteristics and fish assemblages in small streams of Central Amazonia. Copeia 4:751764.CrossRefGoogle Scholar
PAT 1997. Zonificación ambiental para el plan modelo Colombo-Brasilero (Eje Apaporis-Tabatinga: PAT). IGAC, Bogotá. 410 pp.Google Scholar
PRORADAM 1979. La Amazonia Colombiana y sus recursos. Proyecto radargramético del Amazonas, República de Colombia, Bogotá. 590 pp.Google Scholar
RUDAS-LLERAS, A. & PRIETO-CRUZ, A. 2005. Flórula del Parque Nacional Natural Amacayacu, Amazonas, Colombia. Missouri Botanical Garden, Saint Louis. 680 pp.Google Scholar
SABINO, J. & ZUANON, J. 1998. A stream fish assemblage in Central Amazonia: distribution, activity patterns and feeding behavior. Ichthyological Exploration of Freshwaters 8:201210.Google Scholar
SAINT-PAUL, U., ZUANON, J., CORREA, M. A. V., GARCIA, M., FABRE, N. N., BERGER, U. & JUNK, W. J. 2000. Fish communities in central Amazonian white- and blackwater floodplains. Environmental Biology of Fishes 57:235250.CrossRefGoogle Scholar
SAUL, W. G. 1975. An ecological study of fishes at a site in upper Amazonian Ecuador. Proceedings of the Academy of Natural Sciences of Philadelphia 127:93134.Google Scholar
SILVA, C. P. D. 1993. Feeding and spatial distribution of some species of fishes in Igarape do Candiru, Amazonia, Brazil. Acta Amazonica 23:271285.CrossRefGoogle Scholar
SILVANO, R. A. M., DO AMARAL, B. D. & OYAKAWA, O. T. 2000. Spatial and temporal patterns of diversity and distribution of the Upper Jurua River fish community (Brazilian Amazon). Environmental Biology of Fishes 57:2535.CrossRefGoogle Scholar
TUOMISTO, H. 2007. Interpreting the biogeography of South America. Journal of Biogeography 34:12941295.CrossRefGoogle Scholar
VAL, A. L. & DE ALMEIDA-VAL, V. M. F. 1995. The fishes of the Amazon and their environment: physiological and biochemical aspect. Springer-Verlag, Berlin. 224 pp.CrossRefGoogle Scholar
VONHOF, H. B., WESSELINGH, F. P. & GANSSEN, G. M. 1998. Reconstruction of the Miocene western Amazonian aquatic system using molluscan isotopic signatures. Palaeogeography, Palaeoclimatology, Palaeoecology 141:8593.CrossRefGoogle Scholar
WALKER, I. 1995. Amazonian streams and small rivers. Pp. 167193 in Tundisi, J. G., Bicudo, C. E. M. & Matsumura-Tundisi, T. (eds.). Limnology in Brazil. Sociedade Brasileira de Limnologia/Academia Brasileira de Ciencias, Brazil.Google Scholar
ZAR, J. H. 1996. Biostatistical analysis. Prentice Hall, London. 662 pp.Google Scholar