Article contents
A NEW CHARACTERISATION OF m-TAME GROUPS OVER FINITELY GENERATED ABELIAN GROUPS
Published online by Cambridge University Press: 01 December 1999
Abstract
It is shown that, if Q is a finitely generated abelian group, a finitely generated Q-group A is m-tame if and only if the mth tensor power of the augmentation ideal of ℤA is finitely generated over Am [rtimes ] Q, where Q acts diagonally on both Am and the tensor power. It is proved that quotients of metabelian groups of type FP3 are again of type FP3, and a necessary condition is found for a split extension of abelian-by-(nilpotent of class two) groups to be of type FP2. A conjecture is formulated that generalises the FPm-Conjecture for metabelian groups, and it is shown that one of the implications holds in the prime characteristic case.
- Type
- Notes and Papers
- Information
- Copyright
- The London Mathematical Society 1999
- 4
- Cited by