Published online by Cambridge University Press: 09 April 2009
A variant of Kurosh-Amitsur radical theory is developed for algebras with a collection of (finitary) operations ω, all of which are idempotent, that is satisfy the condition ω(x, x,…, x) = x. In such algebras, all classes of any congruence are subalgebras. In place of a largest normal radical subobject, a largest congruence with radical congruence classes is considered. In congruence-permutable varieties the parallels with conventional radical theory are most striking.